Display options
Share it on

Compr Rev Food Sci Food Saf. 2019 Nov;18(6):1882-1897. doi: 10.1111/1541-4337.12500. Epub 2019 Oct 15.

Recent Advances in Microalgal Bioactives for Food, Feed, and Healthcare Products: Commercial Potential, Market Space, and Sustainability.

Comprehensive reviews in food science and food safety

Nethravathy M U, Jitendra G Mehar, Sandeep N Mudliar, Ajam Y Shekh

Affiliations

  1. Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Inst. (CFTRI), Mysore, 570020, India.
  2. Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.

PMID: 33336956 DOI: 10.1111/1541-4337.12500

Abstract

To combat food scarcity as well as to ensure nutritional food supply for sustainable living of increasing population, microalgae are considered as innovative sources for adequate nutrition. Currently, the dried biomass, various carotenoids, phycocyanin, phycoerythrin, omega fatty acids, and enzymes are being used as food additives, food coloring agents, and food supplements. Apart from nutritional importance, microalgae are finding the place in the market as "functional foods." When compared to the total market size of food and feed products derived from all the possible sources, the market portfolio of microalgae-based products is still smaller, but increasing steadily. On the other hand, the genetic modification of microalgae for enhanced production of commercially important metabolites holds a great potential. However, the success of commercial application of genetically modified (GM) algae will be defined by their safety to human health and environment. In view of this, the present study attempts to highlight the industrially important microalgal metabolites, their production, and application in food, feed, nutraceuticals, pharmaceuticals, and cosmeceuticals. The current and future market trends for microalgal products have been thoroughly discussed. Importantly, the safety pertaining to microalgae cultivation and consumption, and regulatory issues for GM microalgae have also been covered.

© 2019 Institute of Food Technologists®.

Keywords: feed; food; healthcare; market bioactive compound; microalgae; sustainability

References

  1. Abe, K., Hattori, H., & Hirano, M. (2007). Accumulation and antioxidant activity of secondary carotenoids in the aerial microalga Coelastrella striolata var. multistriata. Food Chemistry, 100, 656-661. - PubMed
  2. Adamczyk, M., Lasek, J., & Skawińska, A. (2016). CO2 biofixation and growth kinetics of Chlorella vulgaris and Nannochloropsis gaditana. Applied Biochemistry and Biotechnology, 179, 1248-1261. - PubMed
  3. Adarme-Vega, T., Lim, D. K. Y., Timmins, M., Verne, F., Li, Y., & Schenk, P. M. (2012). Microalgal biofactories: A promising approach towards sustainable omega-3 fatty acid production. Microbial Cell Factories, 11, 96. https://doi.org/10.1186/1475-2859-11-96 - PubMed
  4. Ahmed, F., & Schenk, P. M. (2017). UV-C radiation increases sterol production in the microalga Pavlova lutheri. Phytochemistry, 139, 25-32. - PubMed
  5. Akhtar, M. N., Sakeh, N. M., Zareen, S., Gul, S., Lo, K. M., Ul-Haq, Z., & Ahmad, S. (2015). Design and synthesis of chalcone derivatives as potent tyrosinase inhibitors and their structural activity relationship. Journal of Molecular Structure, 1085, 97-103. - PubMed
  6. Al-Delaimy, W. K., Van Kappel, A. L., Ferrari, P., Slimani, N., Steghens, J. P., Bingham, S., & Riboli, E. (2004). Plasma levels of six carotenoids in nine European countries: Report from the European Prospective Investigation into Cancer and Nutrition (EPIC). Public Health Nutrition, 7, 713-722. - PubMed
  7. An, B. K., Jeon, J. Y., Kang, C. W., Kim, J. M., & Hwang, J. K. (2014). The tissue distribution of lutein in laying hens fed lutein fortified chlorella and production of chicken eggs enriched with lutein. Korean Journal for Food Science of Animal Resources, 34(2), 172-177. https://doi.org/10.5851/kosfa.2014.34.2.172 - PubMed
  8. Andrade, M. K., Lauritano, C., Romano, G., & Ianora, A. (2018). Marine microalgae with anti-cancer properties. Marine Drugs, 16(5), 165. https://doi.org/10.3390/md16050165 - PubMed
  9. Ariede, M. B., Candido, T. M., Jacome, A. L. M., Velasco, M. V. R., de Carvalho, J. C. M., & Baby, A. R. (2017). Cosmetic attributes of algae-A review. Algal Research, 25, 483-487. - PubMed
  10. Borowitzka, L. J., & Borowitzka, M. A. (1989). ß-Carotene (provitamin A) production with algae. In E. J. Vandamme (Ed.), Biotechnology of vitamins, pigments and growth factors (pp. 15-26). London, UK: Elsevier Applied Science. - PubMed
  11. Borowitzka, M. A. (2013). High-value products from microalgae-their development and commercialization. Journal of Applied Phycology, 257, 43-756. - PubMed
  12. Bule, M. H., Ahmed, I., Maqbool, F., Bilal, M., & Iqbal, H. M. N. (2018). Microalgae as a source of high-value bioactive compounds. Frontiers in Bioscience, 10(1), 197-216. https://doi.org/10.2741/s509 - PubMed
  13. Campbell, M. L. (2011). Assessing biosecurity risk associated with the importation of non-indigenous microalgae. Environmental Research, 830, 989-998. - PubMed
  14. Caporgno, M. P., & Mathys, A. (2018). Trends in microalgae incorporation into innovative food products with potential health benefits. Frontiers in Nutrition, 5, 58. - PubMed
  15. Carmona, M. A., Jiménez, C., Jiménez-Sanchidrián, C., Peña, F., & Ruiz, J. R. (2010). Isolation of sterols from sunflower oil deodorizer distillate. Journal of Food Engineering, 101, 210-213. - PubMed
  16. Charoonnart, P., Worakajit, N., Zedler, J. A. Z., Meetam, M., Robinson, C., & Saksmerprome, V. (2019). Generation of microalga Chlamydomonas reinhardtii expressing shrimp antiviral dsRNA without supplementation of antibiotics. Scientific Reports, 9, 2045-2322. - PubMed
  17. Chen, C. Y., Zhao, X. Q., Yen, H. W., Ho, S. H., Cheng, C. L., Lee, D. J., & Chang, J. S. (2013). Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal, 78, 1-10. - PubMed
  18. Chen, J. H., Chen, C. Y., Hasunuma, T., Kondo, A., Chang, C. H., Ng, I. S., & Chang, J. S. (2019). Enhancing lutein production with mixotrophic cultivation of Chlorella sorokiniana MB-1-M12 using different bioprocess operation strategies. Bioresource Technology, 278, 17-25. - PubMed
  19. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25, 294-306. - PubMed
  20. Cooperstone, J. L., & Schwartz, S. J. (2016). Recent insights into health benefits of carotenoids. In R. Carle & R. Schweiggert (Eds.), Handbook on natural pigments in food and beverages (pp. 473-497). Cambridge, UK: Woodhead Publishing. - PubMed
  21. Cordero, B. F., Couso, I., León, R., Rodríguez, H., & Vargas, M. Á. (2011a). Enhancement of carotenoids biosynthesis in Chlamydomonas reinhardtii by nuclear transformation using a phytoene synthase gene isolated from Chlorella zofingiensis. Applied Microbiology and Biotechnology, 91, 341-351. - PubMed
  22. Cordero, B. F., Obraztsova, I., Couso, I., Leon, R., Vargas, M. A., & Rodriguez, H. (2011b). Enhancement of lutein production in chlorella sorokiniana (chorophyta) by improvement of culture conditions and random mutagenesis. Marine Drugs, 9, 1607-1624. - PubMed
  23. Costa, S. S., Miranda, A. L., de Morais, M. G., Costa, J. A. V., & Druzian, J. I. (2019). Microalgae as source of polyhydroxyalkanoates (PHAs)-A review. International Journal of Biological Macromolecules, 131, 536-547. https://doi.org/10.1016/j.ijbiomac.2019.03.099 - PubMed
  24. Couteau, C., & Coiffard, L. (2018). Microalgal application in cosmetics. In I. Levine & J. Fleurence (Eds.), Microalgae in health and disease prevention (pp. 317-323). Cambridge, MA: Academic Press. - PubMed
  25. Deniz, I., García-Vaquero, M., & Imamoglu, E. (2017). Trends in red biotechnology: Microalgae for pharmaceutical applications. In C. Gonzalez-Fernandez & R. Munoz (Eds.), Microalgae-based biofuels and bioproducts (pp. 429-460). Cambridge, UK: Woodhead Publishing. - PubMed
  26. Doron, L., Segal, N., & Shapira, M. (2016). Transgene expression in microalgae-From tools to applications. Frontiers in Plant Science, 7, 505. https://doi.org/10.3389/fpls.2016.00505 - PubMed
  27. Doughman, S. D., Krupanidhi, S., & Sanjeevi, C. B. (2007). Omega-3 fatty acids for nutrition and medicine: Considering microalgae oil as a vegetarian source of EPA and DHA. Current Diabetes Reviews, 3, 198-203. - PubMed
  28. Eggersdorfer, M., & Wyss, A. (2018). Carotenoids in human nutrition and health. Archives of Biochemistry and Biophysics, 652, 18-26. - PubMed
  29. Erpel, F., Restovic, F., & Arce-Johnson, P. (2016). Development of phytase-expressing Chlamydomonas reinhardtii for monogastric animal nutrition. BMC Biotechnology, 16, 29. https://doi.org/10.1186/s12896-016-0258-9 - PubMed
  30. Galarza, J. I., Gimpel, J. A., Rojas, V., Arredondo-Vega, B. O., & Henríquez, V. (2018). Over-accumulation of astaxanthin in Haematococcus pluvialis through chloroplast genetic engineering. Algal Research, 31, 291-297. - PubMed
  31. Gallo, M. (2019). Novel foods: Algae. In P. Ferranti, E. Berry, & A. Jock (Eds.), Reference module in food science (pp. 300-306). Amsterdam, The Netherlands: Elsevier. https://doi.org/10.1016/b978-0-08-100596-5.22135-5 - PubMed
  32. Gantar, M., & Svirčev, Z. (2008). Microalgae and cyanobacteria: Food for thought. Journal of Phycology, 44, 260-268. - PubMed
  33. García, J. L., Vicente, D. M., & Galán, B. (2017). Microalgae, old sustainable food and fashion nutraceuticals. Microbial Biotechnology, 10, 1017-1024. - PubMed
  34. García, N., Zazueta, C., & Aguilera-Aguirre, L. (2017). Oxidative stress and inflammation in cardiovascular disease. Oxidative Medicine and Cellular Longevity, 2017, 5853238. https://doi.org/10.1155/2017/5853238 - PubMed
  35. Gimpel, J. A., Henríquez, V., & Mayfield, S. P. (2015). In metabolic engineering of eukaryotic microalgae: Potential and challenges come with great diversity. Frontiers in Microbiology, 6, 1-14. - PubMed
  36. Gong, M., & Bassi, A. (2016). Carotenoids from microalgae: A review of recent developments. Biotechnology Advances, 34, 1396-1412. - PubMed
  37. Guedes, A. C., Amaro, H. M., Barbosa, C. R., Pereira, R. D., & Malcata, F. X. (2011). Fatty acid composition of several wild microalgae and cyanobacteria, with a focus on eicosapentaenoic, docosahexaenoic and α-linolenic acids for eventual dietary uses. Food Research International, 44, 2721-2729. - PubMed
  38. Guerin, M., Huntley, M. E., & Olaizola, M. (2013). Haematococcus astaxanthin: Applications for human health and nutrition. Trends in Biotechnology, 21, 210-216. - PubMed
  39. Guo, D. S., Ji, X. J., Ren, L. J., Yin, F. W., Sun, X. M., Huang, H., & Zhen, G. (2018). Development of a multi-stage continuous fermentation strategy for docosahexaenoic acid production by Schizochytrium sp. Bioresource Technology, 269, 32-39. - PubMed
  40. Guruvayoorappan, C., & Kuttan, G. (2007). Beta-carotene inhibits tumor-specific angiogenesis by altering the cytokine profile and inhibits the nuclear translocation of transcription factors in B16F-10 melanoma cells. Integrative Cancer Therapies, 6, 258-270. - PubMed
  41. Harun, R., Jason, W. S. Y., Cherrington, T., & Danquah, M. K. (2010). Microalgal biomass as a cellulosic fermentation feedstock for, bioethanol production. Journal of Chemical Technology and Biotechnology, 85, 199-203. - PubMed
  42. Hastings, N., Agab, M., Tocher, D. R., Leaver, M. J., Dick, J. R., Sargent, J. R., & Teale, A. J. (2001). A vertebrate fatty acid desaturase with 5 and 6 activities. Proceedings of the National Academy of Sciences, 98, 14304-14309. - PubMed
  43. Henley, W. J., Litaker, R. W., Novoveská, L., Duke, C. S., Quemada, H. D., & Sayre, R. T. (2013). Initial risk assessment of genetically modified (GM) microalgae for commodity-scale biofuel cultivation. Algal Research, 2, 66-77. https://doi.org/10.3389/fnut.2018.00058 - PubMed
  44. Hu, J., Nagarajan, D., Zhang, Q., Chang, J. S., & Lee, D. J. (2018). Heterotrophic cultivation of microalgae for pigment production: A review. Biotechnology Advances, 36, 54-67. - PubMed
  45. Hussain, T., Tan, B., Yin, Y., Blachier, F., Tossou, M. C. B., & Rahu, N. (2016). Oxidative stress and inflammation: What polyphenols can do for us? Oxidative Medicine and Cellular Longevity, 2016, 7432797. https://doi.org/10.1155/2016/7432797 - PubMed
  46. Ismail, A. (2010). Marine lipids overview: Markets, regulation, and the value chain. Oilseeds and fats Crops and Lipids, 17, 205-208. - PubMed
  47. Iwamoto, T., Hosoda, K., Hirano, R., Kurata, H., Matsumoto, A., Miki, W., … Kondo, K. J. (2000). Inhibition of low-density lipoprotein oxidation by astaxanthin. Journal of Atherosclerosis Thrombosis, 7, 216-222. - PubMed
  48. Jacob-Lopes, E., Maroneze, M. M., Deprá, M. C., Sartori, R. B., Dias, R. R., & Zepka, L. Q. (2019). Bioactive food compounds from microalgae: An innovative framework on industrial biorefineries. Current Opinion in Food Science, 25, 1-7. - PubMed
  49. Joe, M. J., Kim, S. N., Choi, H. Y., Shin, W. S., Park, G. M., Kang, D. W., & Kim, Y. K. (2006). The inhibitory effects of Eckol and Dieckol from Ecklonia stolonifera on the expression of matrix metalloproteinase-1 in human dermal fibroblasts. Biological and Pharmaceutical Bulletin, 29, 1735-1739. - PubMed
  50. Joshi, S., Kumari, R., & Upasani, V. N. (2018). Applications of algae in cosmetics: An overview. International Journal of Innovative Research in Science, Engineering Technology, 7, 1269-1278. - PubMed
  51. Kaye, Y., Grundman, O., Leu, S., Zarka, A., Zorin, B., Didi-Cohen, S., & Boussiba, S. (2015). Metabolic engineering toward enhanced LC-PUFA biosynthesis in Nannochloropsis oceanica: Overexpression of endogenous Δ12 desaturase driven by stress-inducible promoter leads to enhanced deposition of polyunsaturated fatty acids in TAG. Algal Research, 11, 387-398. - PubMed
  52. Keller, J. N., Schmitt, F. A., Scheff, S. W., Ding, Q., Chen, Q., Butterfield, D. A., & Markesbery, W. R. (2005). Evidence of increased oxidative damage in subjects with mild cognitive impairment. Neurology, 64, 1152-1156. - PubMed
  53. Khachik, F., de Moura, F. F., Zhao, D. Y., Aebischer, C. P., & Bernstein, P. S. (2002). Transformations of selected carotenoids in plasma, liver, and ocular tissues of humans and in nonprimate animal models. Investigative Ophthalmology and Visual science, 43, 3383-3392. - PubMed
  54. Khan, M. I., Shin, J. H., & Kim, J. D. (2018). The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 17, 36. https://doi.org/10.1186/s12934-018-0879-x - PubMed
  55. Kobayashi, T., Sakaguchi, K., Matsuda, T., Abe, E., Hama, Y., Hayashi, M., & Ito, M. (2011). Increase of eicosapentaenoic acid in Thraustochytrids through Thraustochytrid ubiquitin promoter-driven expression of a fatty acid Δ5 desaturase gene. Journal of Applied Environmental Microbiology, 77, 3870-3876. - PubMed
  56. Koller, M., Muhr, A., & Braunegg, G. (2014). Microalgae as versatile cellular factories for valued products. Algal Research, 6, 52-63. - PubMed
  57. Kopec, R. E., Cooperstone, J. L., Schweiggert, R. M., Young, G. S., Harrison, E. H., Francis, D. M., & Schwartz, S. J. (2014). Avocado consumption enhances human postprandial provitamin a absorption and conversion from a novel high-β-carotene tomato sauce and from carrots. Journal of Nutrition, 144, 1158-1166. - PubMed
  58. Kotake-nara, E., Terasaki, M., & Nagao, A. (2005). Characterization of apoptosis induced by fucoxanthin in human promyelocytic leukemia cells. Bioscience, Biotechnology, and Biochemistry, 69, 224-227. - PubMed
  59. Koyande, A. K., Chew, K. W., Rambabu, K., Tao, Y., Toi, C. D., & Loke, S. P. (2019). Microalgae: A potential alternative to health supplementation for humans. Food Science and Human Wellness, 8, 16-24. https://doi.org/10.1016/j.fshw.2019.03.001 - PubMed
  60. Kumar, B. R., Deviram, G., Mathimani, T., Duc, P. A., & Pugazhendhi, A. (2019). Microalgae as rich source of polyunsaturated fatty acids. Biocatalysis and Agricultural Biotechnology, 17, 583-588. - PubMed
  61. Lafarga, T. (2019). Effect of microalgal biomass incorporation into foods: Nutritional and sensorial attributes of the end products. Algal Research, 41, 101566. - PubMed
  62. Lam, G. P., Vermuë, M. H., Eppink, M. H. M., Wijffels, R. H., & van den Berg, C. (2018). Multi-product microalgae biorefineries: From concept towards reality. Trends in Biotechnology, 36, 216-227. https://www.ncbi.nlm.nih.gov/pubmed/29132753 - PubMed
  63. Lan, C. E., Hung, Y. T., Fang, A. H., & Wu, C. S. (2019). Effects of irradiance on UVA-induced skin aging. Journal of Dermatological Science, 94, 220-228. https://doi.org/10.1016/j.jdermsci.2019.03.005 - PubMed
  64. Lena, G., Casini, I., Lucarini, M., & Lombardi-Boccia, G. (2019). Carotenoid profiling of five microalgae species from large-scale production. Food Research International, 120, 810-818. https://doi.org/10.1016/j.foodres.2018.11.043 - PubMed
  65. León, R., Couso, I., & Fernández, E. (2007). Metabolic engineering of ketocarotenoids biosynthesis in the unicellular microalga Chlamydomonas reinhardtii. Journal of Biotechnology, 130, 143-152. - PubMed
  66. Lin, J. H., Lee, D. J., & Chang, J. S. (2015). Lutein production from biomass: Marigold flowers versus microalgae. Bioresource Technology, 184, 421-428. - PubMed
  67. Liu, J., Gerken, H., Huang, J., & Chen, F. (2013). Engineering of an endogenous phytoene desaturase gene as a dominant selectable marker for Chlamydomonas reinhardtii transformation and enhanced biosynthesis of carotenoids. Process Biochemistry, 48, 788-795. - PubMed
  68. Lorenz, R. T., & Cysewski, G. R. (2000). Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends in Biotechnology, 18, 160-167. - PubMed
  69. Maeda, H., Hosokawa, M., Sashima, T., Murakami-Funayama, K., & Miyashita, K. (2009). Anti-obesity and anti-diabetic effects of fucoxanthin on diet-induced obesity conditions in a murine model. Molecular Medicine Reports, 2, 897-902. - PubMed
  70. Manuell, A. L., Beligni, M. V., Elder, J. H., Siefker, D. T., Tran, M., Weber, A., & Mayfield, S. P. (2007). Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast. Plant Biotechnology Journal, 5, 402-412. - PubMed
  71. Manzo, E., Cutignano, A., Pagano, D., Gallo, C., Barra, G., Nuzzo, G., … Fontana, A. (2017). A new marine-derived sulfoglycolipid triggers dendritic cell activation and immune adjuvant response. Scientific Reports, 7(1), 6286. https://doi.org/10.1038/s41598-017-05969-8 - PubMed
  72. Marin, D. P., Bolin, A. P., Macedo, R. C., Sampaio, S. C., & Otton, R. (2011). ROS production in neutrophils from alloxan-induced diabetic rats treated in vivo with astaxanthin. International Immunopharmacology, 11, 103-109. - PubMed
  73. Márquez-Escobar, V. A., Bañuelos-Hernández, B., & Rosales-Mendoza, S. (2018). Expression of a Zika virus antigen in microalgae: Towards mucosal vaccine development. Journal of Biotechnology, 282, 86-91. - PubMed
  74. Martins, A., Vieira, H., Gaspar, H., & Santos, S. (2014). Marketed marine natural products in the pharmaceutical and cosmeceutical industries: Tips for success. Marine Drugs, 12, 1066-1101. - PubMed
  75. Mayfield, S. P., Franklin, S. E., & Lerner, R. A. (2003). Expression and assembly of a fully active antibody in algae. Proceedings of the National Academy of Sciences of the United States of America, 100, 438-442. - PubMed
  76. Mehar, J., Shekh, A., Uthaiah Malchira, N., Sarada, R., Chauhan, V. S., & Mudliar, S. (2019). Automation of pilot-scale open raceway pond: A case study of CO2-fed pH control on Spirulina biomass, protein and phycocyanin production. Journal of CO2 Utilization, 33, 384-393. https://doi.org/10.1016/j.jcou.2019.07.006 - PubMed
  77. Mendes, R. L., Reis, A. D., & Palavra, A. F. (2006). Supercritical CO2 extraction of γ-linolenic acid and other lipids from Arthrospira (Spirulina) maxima: Comparison with organic solvent extraction. Food Chemistry, 99, 57-63. - PubMed
  78. Mobin, S. M. A., Chowdhury, H., & Alam, F. (2019). Commercially important bioproducts from microalgae and their current applications-A review. Energy Procedia, 160, 752-760. - PubMed
  79. Müller, L., Veyrat, C. C., Lowe, G., & Böhm, V. (2015). Lycopene and Its antioxidant role in the prevention of cardiovascular diseases-A critical review. Critical Reviews in food Science and Nutrition, 56, 1868-1879. - PubMed
  80. Muys, M., Sui, Y., Schwaiger, B., Lesueur, C., Vandenheuvel, D., Vermeir, P., & Vlaeminck, S. E. (2019). High variability in nutritional value and safety of commercially available Chlorella and Spirulina biomass indicates the need for smart production strategies. Bioresource Technology, 275, 247-257. - PubMed
  81. Okada, T., Nakai, M., Maeda, H., Hosokawa, M., Sashima, T., & Miyashita, K. (2008). Suppressive effect of neoxanthin on the differentiation of 3T3-L1 adipose cells. Journal of Oleo Science, 57, 345-351. - PubMed
  82. Paliwal, C., Mitra, M., Bhayani, K., Bharadwaj, S. V. V., Ghosh, T., Dubey, S., & Mishra, S. (2017). Abiotic stresses as tools for metabolites in microalgae. Bioresource Technology, 244, 1216-1226. - PubMed
  83. Pallela, R., Na-Young, Y., & Kim, S. K. (2010). Anti-photoaging and photoprotective compounds derived from marine organisms. Marine Drugs, 8, 1189-1202. - PubMed
  84. Pan, J. L., Wang, H. M., Chen, C. Y., & Chang, J. S. (2012). Extraction of astaxanthin from Haematococcus pluvialis by supercritical carbon dioxide fluid with ethanol modifier. Engineering in Life Sciences, 12, 638-647. - PubMed
  85. Patrick, L. (2000). Beta-carotene: The controversy continues. Alternative Medicine Review, 5, 530-545. - PubMed
  86. Perry, A., Rasmussen, H., & Johnson, E. J. (2009). Xanthophyll (lutein, zeaxanthin) content in fruits, vegetables and corn and egg products. J Food Compos Anal, 22, 9-15. - PubMed
  87. Plourde, M., & Cunnane, S. C. (2007). Extremely limited synthesis of long chain polyunsaturated in adults: Implications for their dietary essentiality and use as supplements. Applied Physiology, Nutrition, and Metabolism, 32, 619-634. - PubMed
  88. Prakash, D., Verma, S., Bhatia, R., & Tiwary, B. N. (2011). Risks and precautions of genetically modified organisms. International Scholarly Research Notices: Ecology, 2011, 369573. https://doi.org/10.5402/2011/369573 - PubMed
  89. Preuss, H. G., Echard, B., Yamashita, E., & Perricone, N. V. (2011). High dose astaxanthin lowers blood pressure and increases insulin sensitivity in rats: Are these effects interdependent? International Journal of Medical Sciences, 8, 126-138. - PubMed
  90. Rajesh, K., Rohit, M. V., & Mohan, S. (2017). Microalgae-based carotenoids production. In R. R. Rastogi, D. Madamwar, & A. Pandey (Eds.), Algal green chemistry (pp. 139-147). Amsterdam, The Netherlands: Elsevier. https://doi.org/10.1016/B978-0-444-63784-0.00007-2 - PubMed
  91. Raposo, M. F. D. J., de Morais, R. M. S. C., & de Morais, A. M. M. B. (2013). Health applications of bioactive compounds from marine microalgae. Life Sciences, 93, 479-486. - PubMed
  92. Rasala, B. A., Muto, M., Lee, P. A., Jager, M., Cardoso, R. M. F., Behnke, C. A., & Mayfield, S. P. (2010). Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnology Journal, 8, 719-733. - PubMed
  93. Ren, L., Zhuang, X., Chen, S., Ji, X., & Huang, H. (2015). Introduction of ω-3 Desaturase obviously changed the fatty acid profile and sterol content of Schizochytrium sp. Journal of Agricultural and Food Chemistry, 63, 9770-9776. - PubMed
  94. Rodolfi, L., Chini Zittelli, G., Bassi, N., Padovani, G., Biondi, N., Bonini, G., & Tredici, M. R. (2009). Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnology and Bioengineering, 102, 100-112. - PubMed
  95. Rodrigues, D. B., Menezes, C. R., Mercadante, A. Z., Jacob-Lopes, E., & Zepka, L. Q. (2015). Bioactive pigments from microalgae Phormidium autumnale. Food Research International, 77, 273-279. - PubMed
  96. Rui, Y., Zhaohui, Z., Wenshan, S., Bafang, L., & Hu, H. (2019). Protective effect of MAAs extracted from Porphyra tenera against UV irradiation-induced photoaging in mous, skin. Journal of Photochemistry and Photobiology B, 192, 26-33. - PubMed
  97. Running, J., Severson, D., & Schneider, K. (2002). Extracellular production of L-ascorbic acid by Chlorella protothecoides, Prototheca species, and mutants of P. moriformis during aerobic culturing at low pH. Journal of Industrial Microbiology and Biotechnology, 29, 93-98. - PubMed
  98. Ryckebosch, E., Bruneel, C., Termote-Verhalle, R., Goiris, K., Muylaert, K., & Foubert, I. (2014). Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. Food Chemistry, 160, 393-400. - PubMed
  99. Ryu, B., Himaya, S. W. A., & Kim, S. K. (2015). Applications of microalgae-derived active ingredients as cosmeceuticals. In S. K. Kim (Ed.), Handbook of marine microalgae (pp. 309-316). Cambridge, MA: Academic Press. https://doi.org/10.1016/B978-0-12-800776-1.00020-0 - PubMed
  100. Sahin, S. C. (2018). The potential of Arthrospira platensis extract as a tyrosinase inhibitor for pharmaceutical or cosmetic applications. South African Journal of Botany, 119, 236-243. - PubMed
  101. Sansone, C., Galasso, C., Orefice, I., Nuzzo, G., Luongo, E., Cutignano, A., … Ianora, A. (2017). The green microalga Tetraselmis suecica reduces oxidative stress and induces repairing mechanisms in human cells. Scientific Reports, 7, 41215. https://doi.org/10.1038/srep41215 - PubMed
  102. Sathasivam, R., Radhakrishnan, R., Hashem, A., & Abd_Allah, E. F. (2017). Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, https://doi.org/10.1016/j.sjbs.2017.11.003 - PubMed
  103. Saunders, J., Smith, T., & Stroud, M. (2019). Malnutrition and undernutrition. Medicine, 47, 152-158. - PubMed
  104. Sayre, R. (2010). Microalgae: The potential for carbon capture. BioScience, 60, 722-727. - PubMed
  105. Schüler, L. M., Schulze, P. S. C., Pereira, H., Barreira, L., León, R., & Varela, J. (2017). Trends and strategies to enhance triacylglycerols and high-value compounds in microalgae. Algal Research, 25, 263-273. - PubMed
  106. Schwarz, S., Obermüller-Jevic, U. C., Hellmis, E., Koch, W., Jacobi, G., & Biesalski, H. K. (2008). Lycopene inhibits disease progression in patients with benign prostate hyperplasia. Journal of Nutrition, 138, 49-53. - PubMed
  107. Shah, M. M., Liang, Y., Cheng, J. J., & Daroch, M. (2016). Astaxanthin-producing green microalga haematococcus pluvialis: From single cell to high value commercial products. Frontiers of Plant Science, 7, 531. - PubMed
  108. Shanab, S. M. M., Hafez, R. M., & Fouad, A. S. (2018). A review on algae and plants as potential source of arachidonic acid. Journal of Advanced Research, 11, 3-13. - PubMed
  109. Shi, H., Chen, H., Gu, Z., Zhang, H., Chen, W., & Chen, Y. Q. (2016). Application of a delta-6 desaturase with α-linolenic acid preference on eicosapentaenoic acid production in Mortierella alpina. Microbial Cell Factories, 15, 117. https://doi.org/10.1186/s12934-016-0516-5 - PubMed
  110. Stadnichuk, I. N., & Tropin, I. V. (2017). Phycobiliproteins: Structure, functions and biotechnological applications. Applied Biochemistry and Microbiology, 53, 1-10. - PubMed
  111. Stoffels, L., Taunt, H. N., Charalambous, B., & Purton, S. (2017). Synthesis of bacteriophage lytic proteins against Streptococcus pneumoniae in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnology Journal, 15, 1130-1140. - PubMed
  112. Sullivan, A. (2002). US Patent No. 20100322867A1. Washington, DC: US Patent and Trademark Office. - PubMed
  113. Sun, X. M., Ren, L. J., Zhao, Q. Y., Ji, X. J., & Huang, H. (2019). Enhancement of lipid accumulation in microalgae by metabolic engineering, Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1864(4), 552-566. - PubMed
  114. Sun, L., Chu, J., Sun, Z., & Chen, L. (2016). Physicochemical properties, immunomodulation and antitumor activities of polysaccharide from Pavlova viridis. Life Science, 144, 156-161. - PubMed
  115. Takaichi, S. (2011). Carotenoids in algae: Distributions, biosyntheses and functions. Marine Drugs, 9, 1101-1118. - PubMed
  116. Thomas, N. V., & Kim, S. K. (2013). Beneficial effects of marine algal compounds in cosmeceuticals. Marine Drugs, 11, 146-164. - PubMed
  117. Toronto, T. D. C., McClure, D. D., Vasiljevski, E., Schindeler, A., Dehghani, F., & Kavanagh, J. M. (2018). Microalgae as a source of vitamin K1. Algal Research, 36, 77-87. - PubMed
  118. Tran, M., Henry, R. E., Siefker, D., Van, C., Newkirk, G., Kim, J., & Mayfield, S. P. (2013). Production of anti-cancer immunotoxins in algae: Ribosome inactivating proteins as fusion partners. Biotechnology and Bioengineering, 110, 2826-2835. - PubMed
  119. Tran, M., Zhou, B., Pettersson, P. L., Gonzalez, M. J., & Mayfield, S. P. (2009). Synthesis and assembly of a full-length human monoclonal antibody in algal chloroplasts. Biotechnology and Bioengineering, 104, 663-673. https://doi.org/10.1002/bit.22446 - PubMed
  120. Vera, D. C., Crespín, D. G., Daranas, H. A., Looga, M. S., Lillsunde, K. E., Tammela, P., … Souto, M. L. (2018). Marine microalgae: Promising source for new bioactive compounds. Marine Drugs, 16(9), E317. https://doi.org/10.3390/md16090317 - PubMed
  121. Vilchez, C., Forjan, E., Cuaresma, M., Bedmar, F., Garbayo, I., & Vega, J. M. (2011). Marine carotenoids: Biological functions and commercial applications. Marine Drugs, 9, 19-333. - PubMed
  122. Wang, H. M. D., Chen, C. C., Huynh, P., & Chang, J. S. (2015). Exploring the potential of using algae in cosmetics. Bioresource Technology, 184, 355-362. - PubMed
  123. Wang, H. M., Chen, C. Y., & Wen, Z. H. (2010). Identifying melanogenesis inhibitors from Cinnamomum subavenium with in vitro and in vivo screening systems by targeting the human tyrosinase. Experimental Dermatology, 20, 242-248. - PubMed
  124. Wang, Y., Curtis-Long, M. J., Lee, B. W., Yuk, H. J., Kim, D. W., Tan, X. F., & Park, K. H. (2014). Inhibition of tyrosinase activity by polyphenol compounds from Flemingia philippinensis roots. Bioorganic & Medicinal Chemistry, 22, 1115-1120. - PubMed
  125. Yan, N., Fan, C., Chen, Y., & Hu, Z. (2016). The potential for microalgae as bioreactors to produce pharmaceuticals. International Journal of Molecular Sciences, 17, E962. https://doi.org/10.3390/ijms17060962 - PubMed
  126. Yang, Z., Li yinü, Chen, F., Li, D., Zhang, Z., Liu, Y., & Shen, G. (2006). Expression of human soluble TRAIL in chlamydomonas reinhardtii chloroplast. Chinese Science Bulletin, 51, 1703-1709. - PubMed
  127. Yeh, P. T., Huang, H. W., Yang, C. M., Yang, W. S., & Yang, C. H. (2016). Astaxanthin inhibits expression of retinal oxidative stress and inflammatory mediators in streptozotocin-induced diabetic rats. PLoS ONE, 11, e0146438. https://doi.org/10.1371/journal.pone.0146438. - PubMed
  128. Zafarghandi, R. S., Sabet, J. K., Abdoli, M. A., & Karbassia, A. (2018). Increasing microalgal carbohydrate content for hydrothermal gasification purposes. Renewable Energy, 116, 710-719. - PubMed
  129. Zhang, Z., Zhang, P., Hamada, M., Takahashi, S., Xing, G., Liu, J., & Sugiura, N. (2008). Potential chemoprevention effect of dietary fucoxanthin on urinary bladder cancer EJ-1 cell line. Oncology Reports, 20, 1099-1103. - PubMed
  130. Zhao, Y., Yue, C., Ding, W., Li, T., Xu, J. W., Zhao, P., & Yu, X. (2018). Butylated hydroxytoluene induces astaxanthin and lipid production in Haematococcus pluvialis under high-light and nitrogen-deficiency conditions. Bioresource Technology, 266, 315-321. - PubMed

Publication Types

Grant support