Display options
Share it on

Nanomaterials (Basel). 2020 Dec 23;11(1). doi: 10.3390/nano11010014.

Cell Volume (3D) Correlative Microscopy Facilitated by Intracellular Fluorescent Nanodiamonds as Multi-Modal Probes.

Nanomaterials (Basel, Switzerland)

Neeraj Prabhakar, Ilya Belevich, Markus Peurla, Xavier Heiligenstein, Huan-Cheng Chang, Cecilia Sahlgren, Eija Jokitalo, Jessica M Rosenholm

Affiliations

  1. Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland.
  2. Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, 20520 Turku, Finland.
  3. Electron Microscopy Unit, Helsinki Institute of Life Science-Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland.
  4. Institute of Biomedicine, Faculty of Medicine, University of Turku, 20520 Turku, Finland.
  5. Cancer Research Laboratory FICAN West, Institute of Biomedicine, University of Turku, 20520 Turku, Finland.
  6. Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland.
  7. CryoCapCell, 155 Boulevard de l'Hopital, 75013 Paris, France.
  8. Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.

PMID: 33374705 PMCID: PMC7822478 DOI: 10.3390/nano11010014

Abstract

Three-dimensional correlative light and electron microscopy (3D CLEM) is attaining popularity as a potential technique to explore the functional aspects of a cell together with high-resolution ultrastructural details across the cell volume. To perform such a 3D CLEM experiment, there is an imperative requirement for multi-modal probes that are both fluorescent and electron-dense. These multi-modal probes will serve as landmarks in matching up the large full cell volume datasets acquired by different imaging modalities. Fluorescent nanodiamonds (FNDs) are a unique nanosized, fluorescent, and electron-dense material from the nanocarbon family. We hereby propose a novel and straightforward method for executing 3D CLEM using FNDs as multi-modal landmarks. We demonstrate that FND is biocompatible and is easily identified both in living cell fluorescence imaging and in serial block-face scanning electron microscopy (SB-EM). We illustrate the method by registering multi-modal datasets.

Keywords: 3D CLEM; correlative microscopy; volume imaging

References

  1. Methods Cell Biol. 2017;140:49-67 - PubMed
  2. Methods Enzymol. 2012;504:201-19 - PubMed
  3. Tissue Cell. 2019 Apr;57:103-110 - PubMed
  4. Front Immunol. 2018 Aug 22;9:1908 - PubMed
  5. Micron. 2014 Jun;61:9-19 - PubMed
  6. J Struct Biol. 2017 Aug;199(2):120-131 - PubMed
  7. Nat Methods. 2017 Jan 31;14(2):102-103 - PubMed
  8. Small. 2018 Feb;14(5): - PubMed
  9. Small. 2011 Dec 2;7(23):3363-70 - PubMed
  10. J Microsc. 2015 Aug;259(2):80-96 - PubMed
  11. J Neurosci. 2008 Mar 19;28(12):2959-64 - PubMed
  12. J Microsc. 2018 May;270(2):142-149 - PubMed
  13. Sci Rep. 2017 Apr 7;7(1):720 - PubMed
  14. Nat Methods. 2015 Jun;12(6):503-13 - PubMed
  15. Nat Nanotechnol. 2014 Jan;9(1):54-8 - PubMed
  16. Methods Cell Biol. 2012;111:325-56 - PubMed
  17. J Struct Biol. 2018 Jun;202(3):275-285 - PubMed
  18. Nat Methods. 2015 Mar;12(3):215-8, 4 p following 218 - PubMed
  19. Elife. 2017 May 13;6: - PubMed
  20. Proc Natl Acad Sci U S A. 2012 Apr 17;109(16):6136-41 - PubMed
  21. Methods Mol Biol. 2014;1117:593-616 - PubMed
  22. PLoS Comput Biol. 2018 Dec 5;14(12):e1006640 - PubMed
  23. Nanotechnology. 2013 Aug 9;24(31):315702 - PubMed
  24. Anal Chem. 2018 Feb 6;90(3):1566-1571 - PubMed
  25. PLoS Biol. 2016 Jan 04;14(1):e1002340 - PubMed
  26. Methods Enzymol. 2009;452:261-75 - PubMed
  27. Nat Methods. 2011 Jan;8(1):80-4 - PubMed
  28. Methods Mol Biol. 2013;931:413-22 - PubMed
  29. PLoS One. 2013;8(2):e55707 - PubMed
  30. Nanoscale. 2013 May 7;5(9):3713-22 - PubMed
  31. Arch Biochem Biophys. 2015 Sep 1;581:98-110 - PubMed
  32. J Struct Biol. 2007 Nov;160(2):135-45 - PubMed
  33. Sci Rep. 2015 Mar 31;5:9583 - PubMed
  34. J Cell Sci. 2017 Jan 1;130(1):278-291 - PubMed
  35. Nat Methods. 2008 Nov;5(11):973-80 - PubMed
  36. PLoS One. 2015 Sep 25;10(9):e0134644 - PubMed
  37. Mol Cell. 2016 Nov 17;64(4):790-802 - PubMed
  38. Front Neuroanat. 2015 May 21;9:60 - PubMed
  39. Nanotechnology. 2009 Oct 21;20(42):425103 - PubMed
  40. Nano Lett. 2019 Mar 13;19(3):2178-2185 - PubMed
  41. PLoS Biol. 2004 Nov;2(11):e329 - PubMed
  42. Biol Cell. 2016 Sep;108(9):245-58 - PubMed
  43. Methods. 2015 Mar;75:44-53 - PubMed
  44. Nat Nanotechnol. 2011 Dec 18;7(1):11-23 - PubMed
  45. ACS Omega. 2017 Jun 30;2(6):2689-2693 - PubMed
  46. J Phys D Appl Phys. 2018 Nov 7;51(44):443001 - PubMed
  47. Molecules. 2020 Dec 13;25(24): - PubMed
  48. Nat Methods. 2012 Jun 28;9(7):690-6 - PubMed
  49. Nature. 2012 Dec 13;492(7428):293-7 - PubMed

Publication Types

Grant support