Display options
Share it on

Front Sports Act Living. 2020 May 08;2:53. doi: 10.3389/fspor.2020.00053. eCollection 2020.

Sustained Isometric Wrist Flexion and Extension Maximal Voluntary Contractions Similarly Impair Hand-Tracking Accuracy in Young Adults Using a Wrist Robot.

Frontiers in sports and active living

Davis A Forman, Garrick N Forman, Maddalena Mugnosso, Jacopo Zenzeri, Bernadette Murphy, Michael W R Holmes

Affiliations

  1. Faculty of Science, Ontario Tech University, Oshawa, ON, Canada.
  2. Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada.
  3. Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Genoa, Italy.
  4. Faculty of Health Sciences, Ontario Tech University, Oshawa, ON, Canada.

PMID: 33345044 PMCID: PMC7739644 DOI: 10.3389/fspor.2020.00053

Abstract

Due to their stabilizing role, the wrist extensor muscles demonstrate an earlier onset of performance fatigability and may impair movement accuracy more than the wrist flexors. However, minimal fatigue research has been conducted at the wrist. Thus, the purpose of this study was to examine how sustained isometric contractions of the wrist extensors/flexors influence hand-tracking accuracy. While gripping the handle of a three-degrees-of-freedom wrist manipulandum, 12 male participants tracked a 2:3 Lissajous curve (±32° wrist flexion/extension; ±18° radial/ulnar deviation). A blue, circular target moved about the trajectory and participants tracked the target with a yellow circle (corresponding to the handle's position). Five baseline tracking trials were performed prior to the fatiguing task. Participants then exerted either maximal wrist extension or flexion force (performed on separate days) against a force transducer until they were unable to maintain 25% of their pre-fatigue maximal voluntary contraction (MVC). Participants then performed 7 tracking trials from immediately post-fatigue to 10 min after. Performance fatigability was assessed using various metrics to account for errors in position-tracking, error tendencies, and movement smoothness. While there were no differences in tracking error between flexion/extension sessions, tracking error significantly increased immediately post-fatigue (Baseline: 1.40 ± 0.54°, Post-fatigue: 2.02 ± 0.51°,

Copyright © 2020 Forman, Forman, Mugnosso, Zenzeri, Murphy and Holmes.

Keywords: extension; flexion; forearm; isometric; kinematics; performance fatigability; robotics; tracking

References

  1. Med Sci Sports Exerc. 1987 Oct;19(5):518-23 - PubMed
  2. Exp Brain Res. 2003 Sep;152(2):211-20 - PubMed
  3. J Electromyogr Kinesiol. 2019 Apr;45:53-60 - PubMed
  4. J Appl Physiol (1985). 2008 Oct;105(4):1199-209 - PubMed
  5. Sci Rep. 2020 Mar 5;10(1):4161 - PubMed
  6. Front Hum Neurosci. 2019 Nov 01;13:396 - PubMed
  7. Neurosci Lett. 2008 May 30;437(2):154-7 - PubMed
  8. Hum Mov Sci. 2007 Feb;26(1):113-23 - PubMed
  9. J Neuroeng Rehabil. 2009 Dec 07;6:44 - PubMed
  10. Hum Mov Sci. 2015 Aug;42:273-87 - PubMed
  11. Neuropsychologia. 1994 Oct;32(10):1209-23 - PubMed
  12. J Neurosci. 2003 Nov 12;23(32):10224-30 - PubMed
  13. J Rheumatol. 2007 May;34(5):1076-82 - PubMed
  14. Med Sci Sports Exerc. 1986 Feb;18(1):69-74 - PubMed
  15. Neurology. 2013 Jan 22;80(4):409-16 - PubMed
  16. Eur J Appl Physiol. 2000 Oct;83(2-3):116-27 - PubMed
  17. Med Biol Eng Comput. 1978 Nov;16(6):651-60 - PubMed
  18. J Appl Physiol (1985). 2005 Feb;98(2):429-36 - PubMed
  19. Exp Brain Res. 1993;94(1):179-82 - PubMed
  20. Eur J Appl Physiol. 2014 Jan;114(1):205-15 - PubMed
  21. Int Orthop. 1994 Oct;18(5):263-7 - PubMed
  22. J Appl Physiol (1985). 2002 Feb;92(2):679-84 - PubMed
  23. J Neurophysiol. 1997 Jul;78(1):554-60 - PubMed
  24. Am J Physiol. 1991 Aug;261(2 Pt 1):C195-209 - PubMed
  25. J Appl Physiol (1985). 2008 Feb;104(2):542-50 - PubMed
  26. J Neurophysiol. 1987 Jul;58(1):125-37 - PubMed
  27. J Neurophysiol. 2008 Mar;99(3):1096-104 - PubMed
  28. J Hand Surg Am. 1992 Sep;17(5):787-98 - PubMed
  29. Med Sci Sports Exerc. 1999 Jul;31(7):1047-52 - PubMed
  30. J Physiol. 1977 Jan;264(3):865-79 - PubMed
  31. J Physiol. 1956 Jun 28;132(3):677-81 - PubMed
  32. Am J Sports Med. 1998 Mar-Apr;26(2):262-5 - PubMed
  33. J Electromyogr Kinesiol. 2008 Jun;18(3):410-9 - PubMed
  34. J Physiol. 2013 Jul 15;591(14):3591-604 - PubMed
  35. Exp Brain Res. 2008 Feb;185(1):151-6 - PubMed
  36. Biomed Eng Online. 2015 Dec 12;14:115 - PubMed
  37. J Neurophysiol. 2008 Feb;99(2):554-63 - PubMed
  38. J Neurophysiol. 1999 Apr;81(4):1458-68 - PubMed
  39. J Appl Physiol (1985). 2006 Oct;101(4):1036-44 - PubMed
  40. J Anat. 2009 Dec;215(6):636-41 - PubMed
  41. Muscle Nerve. 2015 Feb;51(2):259-67 - PubMed
  42. Physiol Rev. 2008 Jan;88(1):287-332 - PubMed
  43. J Mot Behav. 2001 Jun;33(2):153-64 - PubMed
  44. J Appl Physiol (1985). 2007 Aug;103(2):560-8 - PubMed
  45. J Neurophysiol. 2003 May;89(5):2396-405 - PubMed
  46. Clin Biomech (Bristol, Avon). 1997 Jan;12(1):39-43 - PubMed
  47. Brain Behav. 2012 Sep;2(5):640-6 - PubMed
  48. Biol Cybern. 2005 Nov;93(5):373-81 - PubMed
  49. J Appl Physiol (1985). 2015 Feb 15;118(4):408-18 - PubMed
  50. Am J Epidemiol. 2006 Dec 1;164(11):1065-74 - PubMed
  51. J Physiol. 1983 Jul;340:335-46 - PubMed
  52. Physiol Rev. 1994 Jan;74(1):49-94 - PubMed
  53. Anat Rec. 1985 Apr;211(4):403-9 - PubMed
  54. Scand J Rheumatol. 1974;3(3):145-53 - PubMed
  55. Br J Sports Med. 1981 Dec;15(4):250-6 - PubMed
  56. Exp Brain Res. 2015 May;233(5):1663-75 - PubMed
  57. Eur J Appl Physiol Occup Physiol. 1999 Oct;80(5):467-71 - PubMed
  58. J Physiol. 1991;440:497-512 - PubMed
  59. Exp Brain Res. 1991;86(2):451-8 - PubMed
  60. J Physiol. 1996 Jan 15;490 ( Pt 2):529-36 - PubMed
  61. Am J Phys Med. 1959 Aug;38:148-58 - PubMed
  62. Neurosci Lett. 1999 Oct 15;274(1):66-70 - PubMed
  63. J Physiol. 1996 Jan 15;490 ( Pt 2):519-28 - PubMed
  64. Am J Sports Med. 1979 Jul-Aug;7(4):234-8 - PubMed
  65. J Appl Physiol (1985). 1986 Aug;61(2):421-9 - PubMed
  66. Front Physiol. 2018 Oct 10;9:1395 - PubMed
  67. Am J Sports Med. 2003 Nov-Dec;31(6):990-4 - PubMed
  68. J Anat. 1997 May;190 ( Pt 4):505-13 - PubMed
  69. Am J Phys Med. 1968 Jun;47(3):125-35 - PubMed
  70. Pflugers Arch. 1989 Feb;413(4):422-8 - PubMed
  71. PLoS One. 2010 Jun 17;5(6):e11189 - PubMed
  72. J Hand Surg Am. 1990 Mar;15(2):244-50 - PubMed
  73. J Anat. 2001 Dec;199(Pt 6):709-16 - PubMed
  74. Physiol Rev. 2001 Oct;81(4):1725-89 - PubMed
  75. Eur J Appl Physiol Occup Physiol. 1996;73(1-2):175-9 - PubMed
  76. Ergonomics. 2008 Dec;51(12):1873-84 - PubMed
  77. J Appl Physiol (1985). 1994 Feb;76(2):531-8 - PubMed
  78. Eur J Appl Physiol Occup Physiol. 1980;43(2):173-82 - PubMed
  79. Acta Physiol Scand. 1982 Feb;114(2):277-81 - PubMed
  80. Med Sci Sports Exerc. 2009 Apr;41(4):956-64 - PubMed
  81. Eur J Appl Physiol Occup Physiol. 1997;76(1):41-7 - PubMed
  82. J Biomech. 1997 Jul;30(7):705-12 - PubMed
  83. Eur J Appl Physiol. 2003 Jan;88(4-5):485-6 - PubMed
  84. Comput Methods Biomech Biomed Engin. 2015;18(16):1826-34 - PubMed
  85. Compr Physiol. 2012 Oct;2(4):2629-82 - PubMed
  86. J Neurophysiol. 2002 Sep;88(3):1533-44 - PubMed
  87. Med Sci Sports Exerc. 2016 Nov;48(11):2228-2238 - PubMed
  88. Clin Biomech (Bristol, Avon). 1996 Jan;11(1):1-15 - PubMed
  89. J Hand Surg Am. 1992 Sep;17(5):804-9 - PubMed
  90. Eur J Appl Physiol. 2000 Oct;83(2-3):106-15 - PubMed
  91. Comput Biol Med. 1980;10(2):83-95 - PubMed
  92. J Physiol. 2006 Jun 1;573(Pt 2):511-23 - PubMed
  93. Front Bioeng Biotechnol. 2019 Aug 21;7:181 - PubMed
  94. Exp Brain Res. 2004 Feb;154(4):479-87 - PubMed
  95. J Appl Physiol. 1960 May;15:479-82 - PubMed
  96. Ergonomics. 2003 Jul 15;46(9):956-75 - PubMed
  97. Sports Med. 2005;35(9):757-77 - PubMed

Publication Types