Display options
Share it on

Proc Natl Acad Sci U S A. 2021 Jan 12;118(2). doi: 10.1073/pnas.2019248118.

Pixel-based open-space microfluidics for versatile surface processing.

Proceedings of the National Academy of Sciences of the United States of America

Pierre-Alexandre Goyette, Étienne Boulais, Maude Tremblay, Thomas Gervais

Affiliations

  1. Institut de Génie Biomédical, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada.
  2. Department of Engineering Physics, École Polytechnique de Montréal, Montréal, QC H3T 1J4, Canada.
  3. Institut de Génie Biomédical, Polytechnique Montréal, Montréal, QC H3T 1J4, Canada; [email protected].
  4. Institut du Cancer de Montréal, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, QC H2X 0C1, Canada.

PMID: 33376203 PMCID: PMC7812784 DOI: 10.1073/pnas.2019248118

Abstract

An increasing number of applications in biology, chemistry, and material sciences require fluid manipulation beyond what is possible with current automated pipette handlers, such as gradient generation, interface reactions, reagent streaming, and reconfigurability. In this article, we introduce the pixelated chemical display (PCD), a scalable strategy for highly parallel, reconfigurable liquid handling on open surfaces. Microfluidic "pixels" are created when a fluid stream injected above a surface is confined by neighboring identical fluid streams, forming a repeatable flow unit that can be used to tesselate a surface. PCDs generating up to 144 pixels are fabricated and used to project "chemical moving pictures" made of several reagents over both immersed and dry surfaces, without any physical barrier or wall. This work distinguishes itself from previous work in open-space microfluidics by presenting a device architecture where the number of confinement areas can be scaled to any size. Furthermore, it challenges the open-space tenet that the aspiration rate must be higher than the injection rate for reagents to be confined. Overall, this article sets the foundation for massively parallel surface processing using continuous flow streams and showcases possibilities in both wet and dry surface patterning and roll-to-roll processes.

Keywords: microfluidics; open-space microfluidics; surface processing

Conflict of interest statement

The authors declare no competing interest.

References

  1. Chemphyschem. 2016 Oct 18;17(20):3155-3159 - PubMed
  2. Langmuir. 2016 Oct 18;32(41):10537-10544 - PubMed
  3. Nat Rev Drug Discov. 2012 Aug;11(8):620-32 - PubMed
  4. Lab Chip. 2018 Feb 13;18(4):639-647 - PubMed
  5. Science. 2002 Oct 18;298(5593):580-4 - PubMed
  6. Nat Commun. 2011 Sep 06;2:464 - PubMed
  7. Nat Mater. 2005 Aug;4(8):622-8 - PubMed
  8. Biomicrofluidics. 2009 Sep 08;3(3):34104 - PubMed
  9. Nature. 2017 Apr 19;544(7650):337-339 - PubMed
  10. Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):3976-81 - PubMed
  11. Lab Chip. 2012 Apr 7;12(7):1255-61 - PubMed
  12. J Am Stat Assoc. 1949 Sep;44(247):335-41 - PubMed
  13. Nat Commun. 2019 Apr 16;10(1):1781 - PubMed
  14. J Lab Autom. 2012 Jun;17(3):169-85 - PubMed
  15. Sci Rep. 2018 Jul 20;8(1):10995 - PubMed
  16. Proc Natl Acad Sci U S A. 2008 Nov 4;105(44):16843-8 - PubMed
  17. Angew Chem Int Ed Engl. 2012 Nov 5;51(45):11224-40 - PubMed
  18. Cell. 2013 Feb 28;152(5):945-56 - PubMed
  19. Langmuir. 2014 Apr 1;30(12):3640-5 - PubMed

Publication Types