Display options
Share it on

Biosci Rep. 2021 Jan 29;41(1). doi: 10.1042/BSR20203166.

Analgesic, anti-inflammatory and anti-ulcer properties of Thai Perilla frutescence fruit oil in animals.

Bioscience reports

Narisara Paradee, Pimpisid Koonyosying, Winthana Kusirisin, Rattanaporn Janthip, Duangta Kanjanapothi, Kovit Pattanapanyasat, Somdet Srichairatanakool

Affiliations

  1. Oxidative Stress Cluster, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
  2. Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
  3. Faculty of Pharmacy, Payap University, Chiang Mai, Thailand.
  4. Department of Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand.

PMID: 33399183 PMCID: PMC7823181 DOI: 10.1042/BSR20203166

Abstract

Perilla frutescens fruit oil (PFO) is rich in α-linolenic acid (ALA) and exhibits biological activities. We aimed to investigate analgesic, anti-inflammatory and anti-ulcer activities of PFO and PFO-supplemented soybean milk (PFO-SM) in animal models. Analgesic activity was assessed in acetic acid-induced writhing in mice, while anti-inflammatory activity was performed in ethyl phenylpropiolate (EPP)-induced ear edema and carrageenan-induced hind paw edema in rats. Anti-ulcer effects were conducted in water immersion stress, HCl/ethanol and indomethacin-induced gastric ulcer in rats. Distinctly, PFO, containing 6.96 mg ALA and 2.61 mg LA equivalence/g, did not induce acute toxicity (LD50 > 10 mL/kg) in mice. PFO (2.5 and 5 mL/kg) and PFO-SM (0.05 mL PFO equivalence/kg) inhibited incidences of writhing (16.8, 18.0 and 32.3%, respectively) in acetic acid-induced mice. In addition, topical applications of PFO (0.1 and 1 mL/ear) significantly inhibited EPP-induced ear edema (59.3 and 65.7%, respectively) in rats, while PFO-SM slightly inhibited ear edema (25.9%). However, PFO and PFO-SM did not inhibit carrageenan-induced hind paw edema in rats. Indeed, PFO (2.5 and 5 mL/kg) significantly inhibited gastric ulcers in rats that induced by water immersion stress (92.4 and 96.6%, respectively), HCl/ethanol (74.8 and 73.3%, respectively) and indomethacin (68.8 and 88.9%, respectively), while PFO-SM did not. PFO displayed potent analgesic, anti-inflammatory and anti-ulcer properties, while PFO-SM exerted only analgesic properties. Thus, Thai PFO and its functional drink offer potential benefits in treatment of analgesic, inflammatory diseases and gastric ulcer.

© 2021 The Author(s).

Keywords: Perilla frutescence; analgesic; anti-inflammatory; anti-ulcer; fruit oil

References

  1. J Nutr Biochem. 2004 Aug;15(8):485-92 - PubMed
  2. Prostaglandins Leukot Essent Fatty Acids. 2003 Mar;68(3):207-12 - PubMed
  3. Oncotarget. 2017 Dec 14;9(6):7204-7218 - PubMed
  4. Food Chem. 2015 Apr 15;173:694-701 - PubMed
  5. Chem Pharm Bull (Tokyo). 1963 Oct;11:1282-90 - PubMed
  6. J Steroid Biochem. 1982 Jun;16(6):779-86 - PubMed
  7. Korean J Intern Med. 2021 Jan;36(1):67-75 - PubMed
  8. Molecules. 2020 May 27;25(11): - PubMed
  9. J Nutr Biochem. 2017 Aug;46:90-99 - PubMed
  10. Am J Clin Nutr. 2006 May;83(5):1118-25 - PubMed
  11. J Pharmacol Sci. 2007 Sep;105(1):94-102 - PubMed
  12. Nutr Neurosci. 2016 Sep;19(7):318-26 - PubMed
  13. Scand J Gastroenterol. 1969;4(3):265-7 - PubMed
  14. J Res Med Sci. 2015 Dec;20(12):1177-81 - PubMed
  15. Orient Pharm Exp Med. 2011 Mar;11(1):51-59 - PubMed
  16. Thromb Res. 2003 Jun 15;110(5-6):255-8 - PubMed
  17. Regul Toxicol Pharmacol. 2019 Apr;103:229-236 - PubMed
  18. J Cardiovasc Pharmacol. 2019 Sep;74(3):201-209 - PubMed
  19. Prostaglandins Leukot Essent Fatty Acids. 2009 Aug-Sep;81(2-3):165-70 - PubMed
  20. Pharm Biol. 2014 Dec;52(12):1591-7 - PubMed
  21. Front Cardiovasc Med. 2018 Oct 23;5:146 - PubMed
  22. Proc Soc Exp Biol Med. 1962 Dec;111:544-7 - PubMed
  23. Adv Pharmacol Sci. 2011;2011:740687 - PubMed
  24. Vet World. 2018 May;11(5):627-635 - PubMed
  25. J Nutr Sci Vitaminol (Tokyo). 1999 Dec;45(6):675-86 - PubMed
  26. J Biochem Mol Toxicol. 2019 Dec;33(12):e22406 - PubMed
  27. Foods. 2013 May 21;2(2):198-212 - PubMed
  28. Am J Clin Nutr. 2007 Feb;85(2):385-91 - PubMed
  29. Nutrients. 2017 Jul 21;9(7): - PubMed
  30. Immunity. 2013 Jun 27;38(6):1154-63 - PubMed
  31. Nat Immunol. 2017 Oct 18;18(11):1175-1180 - PubMed
  32. Lipids. 2008 Jun;43(6):499-506 - PubMed
  33. Invest Ophthalmol Vis Sci. 2012 Jul 03;53(8):4396-406 - PubMed
  34. Nutr Res Pract. 2018 Apr;12(2):93-100 - PubMed
  35. Pharm Biol. 2019 Dec;57(1):770-777 - PubMed
  36. Biomed Pharmacother. 2019 Feb;110:554-560 - PubMed
  37. Mediators Inflamm. 2014;2014:128919 - PubMed
  38. BMC Complement Altern Med. 2019 Dec 19;19(1):373 - PubMed
  39. Lab Anim Res. 2016 Sep;32(3):171-179 - PubMed
  40. Life Sci. 2005 Apr 22;76(23):2669-80 - PubMed
  41. Free Radic Biol Med. 2014 Jul;72:76-90 - PubMed
  42. PLoS One. 2014 Jun 09;9(6):e97957 - PubMed
  43. Pharmacol Res. 2010 Mar;61(3):234-41 - PubMed
  44. BMC Complement Altern Med. 2016 Feb 25;16:79 - PubMed
  45. Lab Anim Res. 2014 Mar;30(1):21-7 - PubMed
  46. Jpn J Pharmacol. 1983 Oct;33(5):939-45 - PubMed
  47. Planta Med. 2007 Jan;73(1):53-8 - PubMed
  48. Cancer Lett. 2014 Jun 28;348(1-2):1-11 - PubMed

Publication Types