Display options
Share it on

Shock. 2021 Aug 01;56(2):167-177. doi: 10.1097/SHK.0000000000001704.

Toll-Like Receptors, Associated Biochemical Signaling Networks, and S100 Ligands.

Shock (Augusta, Ga.)

Sahil Gupta, James N Tsoporis, Song-Hui Jia, Claudia C Dos Santos, Thomas G Parker, John C Marshall

Affiliations

  1. Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
  2. The Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Canada.
  3. Department of Critical Care Medicine, St. Michael's Hospital, University of Toronto, Toronto, Canada.
  4. Division of Cardiology, Department of Medicine, University of Toronto, Toronto, Canada.
  5. Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Canada.

PMID: 33350801 DOI: 10.1097/SHK.0000000000001704

Abstract

ABSTRACT: Host cells recognize molecules that signal danger using pattern recognition receptors (PRRs). Toll-like receptors (TLRs) are the most studied class of PRRs and detect pathogen-associated molecular patterns and danger-associated molecular patterns. Cellular TLR activation and signal transduction can therefore contain, combat, and clear danger by enabling appropriate gene transcription. Here, we review the expression, regulation, and function of different TLRs, with an emphasis on TLR-4, and how TLR adaptor protein binding directs intracellular signaling resulting in activation or termination of an innate immune response. Finally, we highlight the recent progress of research on the involvement of S100 proteins as ligands for TLR-4 in inflammatory disease.

Copyright © 2020 by the Shock Society.

Conflict of interest statement

The authors report no conflicts of interest.

References

  1. Medzhitov R. Inflammation 2010: New Adventures of an Old Flame. Cell 140 (6):771–776, 2010. - PubMed
  2. Medzhitov R, Janeway CAJ. Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 9 (1):4–9, 1997. - PubMed
  3. Silva MT. Neutrophils and macrophages work in concert as inducers and effectors of adaptive immunity against extracellular and intracellular microbial pathogens. J Leukoc Biol 87 (5):805–813, 2010. - PubMed
  4. Liu L, Gong T, Tao W, Lin B, Li C, Zheng X, Zhu S, Jiang W, Zhou R. Commensal viruses maintain intestinal intraepithelial lymphocytes via noncanonical RIG-I signaling. Nat Immunol 20 (12):1681–1691, 2019. - PubMed
  5. Walsh D, McCarthy J, O’Driscoll C. Melgar: Pattern recognition receptors - molecular orchestrators of inflammation in inflammatory bowel disease. Cytokine Growth Factor Rev 24 (2):91–104, 2013. - PubMed
  6. Caneparo V, Landolfo S, Gariglio M, De Andrea M. The absent in melanoma 2-like receptor IFN-inducible protein 16 as an inflammasome regulator in systemic lupus erythematosus: the dark side of sensing microbes. Front Immunol 9:1–14, 2018. - PubMed
  7. Frimat M, Teissier T, Boulanger E. Is RAGE the receptor for inflammaging? Aging 11 (17):6620–6621, 2019. - PubMed
  8. Tsoporis JN, Hatziagelaki E, Gupta S, Izhar S, Salpeas V, Tsiavou A, Rigopoulos AG, Triantafyllis AS, Marshall JC, Parker TG, et al. Circulating ligands of the receptor for advanced glycation end products and the soluble form of the receptor modulate cardiovascular cell apoptosis in diabetes. Molecules 25 (22):E5235, 2020. - PubMed
  9. Mineev KS, Goncharuk SA, Goncharuk MV, Volynsky PE, Novikova EV, Aresinev AS. Spatial structure of TLR4 transmembrane domain in bicelles provides the insight into the receptor activation mechanism. Sci Rep 7 (1):1–12, 2017. - PubMed
  10. Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol 1 (2):135–145, 2001. - PubMed
  11. Nishiya T, Kajita E, Miwa S. Ligand-independent oligomerization of TLR4 regulated by a short hydrophobic region adjacent to the transmembrane domain. Biochem Biophys Res Commun 341 (4):1128–1134, 2006. - PubMed
  12. Kawasaki T, Kawai T. Toll-like receptor signaling pathways. Front Immunol 5:1–8, 2014. - PubMed
  13. Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB, Schroeder L, Aderem A. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc Natl Acad Sci U S A 97 (25):13766–13771, 2000. - PubMed
  14. Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22 (2):240–273, 2009. - PubMed
  15. Lu J, Sun PD. The structure of the TLR5-Flagellin complex: a new mode of pathogen detection, conserved receptor dimerization for signaling. Sci Signal 5 (216):e11, 2012. - PubMed
  16. Lee SMY, Kok KH, Jaume M, Cheung TKW, Yip T-F, Lai JCC, Webster RG, Jin D0Y, Malik Peiris JS. Toll-like receptor 10 is involved in induction of innate immune responses to influenza virus infection. Proc Natl Acad Sci U S A 111 (10):3793–3798, 2014. - PubMed
  17. Lee BL, Barton GM. Trafficking of endosomal Toll-like receptors. Trends Cell Biol 24 (6):360–369, 2014. - PubMed
  18. Ruysschaert JM, Lonez C. Role of lipid microdomains in TLR-mediated signalling. Biochim Biophys Acta 1848 (9):1860–1867, 2015. - PubMed
  19. Gay NJ, Symmons MF, Gangloff M, Bryant CE. Assembly and localization of Toll-like receptor signalling complexes. Nat Rev Immunol 14 (8):546–558, 2014. - PubMed
  20. Chaturvedi A, Pierce SK. How location governs Toll like receptor signaling. Allergy 10 (6):621–628, 2009. - PubMed
  21. Zhang SY, Jouanguy E, Ugolini S, Smahi A, Elain G, Romero P, Segal D, Sancho-Shimizy V, Lorenzo L, Puel A, et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science 317 (5844):1522–1527, 2007. - PubMed
  22. Mancuso G, Gambuzza M, Midiri A, Biondo C, Papasergi S, Akira S, Teti G, Beninati C. Bacterial recognition by TLR7 in the lysosomes of conventional dendritic cells. Nat Immunol 10 (6):587–594, 2009. - PubMed
  23. Guiducci C, Gong M, Cepika AM, Xu Z, Tripodo C, Bennett L, Crain C, Quartier P, Cush JJ, Pascual V, et al. RNA recognition by human TLR8 can lead to autoimmune inflammation. J Exp Med 210 (13):2903–2919, 2013. - PubMed
  24. Latz E, Verma A, Visintin A, Gong M, Sirois CM, Klein DCG, Monks BG, McKnight CJ, Lamphier MS, Duprex WP, et al. Ligand-induced conformational changes allosterically activate Toll-like receptor 9. Nat Immunol 8 (7):772–779, 2007. - PubMed
  25. Horng T, Medzhitov R. Drosophila MyD88 is an adapter in the Toll signaling pathway. Proc Natl Acad Sci U S A 98 (22):12654–12658, 2001. - PubMed
  26. Kenny EF, Talbot S, Gong M, Golenbock DT, Bryant CE, O’Neill LAJ. MyD88 adaptor-like is not essential for TLR2 signaling and inhibits signaling by TLR3. J Immunol 183 (6):3642–3651, 2009. - PubMed
  27. O’Neill LAJ, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7 (5):353–364, 2007. - PubMed
  28. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 124 (4):783–801, 2006. - PubMed
  29. Dunne A, O’Neill LAJ. The interleukin-1 receptor/toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci Signal 2000 (44):re1, 2000. - PubMed
  30. Bowie A, O’Neill LAJ. The interleukin-1 receptor/Toll-like receptor superfamily: signal generators for pro-inflammatory interleukins and microbial products. J Leukoc Biol 67 (4):508–514, 2000. - PubMed
  31. Lin SC, Lo YC, Wu H. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 465 (7300):885–890, 2010. - PubMed
  32. Motshwene PG, Moncrieffe MC, Grossmann JG, Kao C, Ayaluru M, Sandercock AM, Robinson CV, Latz E, Gay NJ. An Oligomeric Signaling Platform formed by the toll-like receptor signal transducers MyD88 and IRAK-4. J Biol Chem 284 (37):25404–25411, 2009. - PubMed
  33. Kollewe C, Mackensen AC, Neumann D, Knop J, Cao P, Li S, Wesche H, Martin MU. Sequential autophosphorylation steps in the interleukin-1 receptor-associated kinase-1 regulate its availability as an adapter in interleukin-1 signaling. J Biol Chem 279 (7):5227–5236, 2004. - PubMed
  34. Chen ZJ. Ubiquitination in signaling to and activation of IKK. Immunol Rev 246 (1):95–106, 2012. - PubMed
  35. Ajibade AA, Wang HY, Wang R-F. Cell type-specific function of TAK1 in innate immune signaling. Trends Immunol 34 (7):307–316, 2013. - PubMed
  36. Scheidereit C. IκB kinase complexes: gateways to NF-κB activation and transcription. Oncogene 25 (51):6685–6705, 2006. - PubMed
  37. Deguine J, Barton GM. MyD88: a central player in innate immune signaling. F1000Prime Rep 6:1–7, 2014. - PubMed
  38. Kawai T, Adachi O, Ogawa T, Takeda K, Akira S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11 (1):115–122, 1999. - PubMed
  39. Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, Sakagami M, Nakanishi K, Akira S. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL- 18-mediated function. Immunity 9 (1):143–150, 1998. - PubMed
  40. Ngo VN, Young RM, Schmitz R, Jhavar S, Xiao W, Lim K-H, Kohlhammer H, Xu W, Yang W, Zhao H, et al. Oncogenically active MYD88 mutations in human lymphoma. Nature 470 (7332):115–119, 2011. - PubMed
  41. Janssens S, Burns K, Vercammen E, Tschopp J, Beyaert R. MyD88S, a splice variant of MyD88, differentially modulates NF-kappaB- and AP-1-dependent gene expression. FEBS Lett 548 (1–3):103–107, 2003. - PubMed
  42. Burns K, Janssens S, Brissoni B, Olivos N, Beyaert R, Tschopp J. Inhibition of interleukin 1 receptor/toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J Exp Med 197 (2):263–268, 2003. - PubMed
  43. Wesche H, Henzel WJ, Shillinglaw W, Li S, Cao Z. MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7 (6):837–847, 1997. - PubMed
  44. Honda K, Yanai H, Mizutani T, Negishi H, Shimada N, Suzuki N, Ohba Y, Takaoka A, Yeh W-C, Taniguchi T. Role of a transductional-transcriptional processor complex involving MyD88 and IRF-7 in Toll-like receptor signaling. Proc Natl Acad Sci U S A 101 (43):15416–15421, 2004. - PubMed
  45. Fitzgerald KA, Palsson-Mcdermott EM, Bowie AG, Jefferies CA, Mansell AS, Brady G, Brint E, Dunne A, Gray P, Harte MT, et al. Mal (MyD88-adapter-like) is required for toll-like recepfor-4 signal transduction. Nature 413 (6851):78–83, 2001. - PubMed
  46. Mansell A, Brint E, Gould JA, O’Neill LA, Hertzog PJ. Mal interacts with tumor necrosis factor receptor-associated factor (TRAF)-6 to mediate NF-(B activation by Toll-like receptor (TLR)-2 and TLR4. J Biol Chem 279 (36):37227–37230, 2004. - PubMed
  47. Kagan JC, Medzhitov R. Phosphoinositide-mediated adaptor recruitment controls toll-like receptor signaling. Cell 125 (5):943–955, 2006. - PubMed
  48. M McLaughlin S, Wang J, Gambhir A, Murray D. PIP2 and proteins: interactions, organization, and information flow. Annu Rev Biophys Biomol Struct 31:151–175, 2002. - PubMed
  49. Yamamoto M, Sato S, Hemmi H, Sanjo H, Uesmatsu S, Kaisho T, Hoshino K, Takechi O, Kobayashi M, Fujita T, et al. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420 (6913):324–329, 2002. - PubMed
  50. Horng T, Barton GM, Flavell RA, Medzhitov R. The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 420 (6913):329–333, 2002. - PubMed
  51. Dunne A, Ejdebäck M, Ludidi PL, O’Neill LAJ, Gay NJ. Structural complementarity of toll/interleukin-1 receptor domains in toll-like receptors and the adaptors Mal and MyD88. J Biol Chem 278 (42):41443–41451, 2003. - PubMed
  52. Jeyaseelan S, Manzer R, Young SK, Yamamoto M, Akira S, Mason RJ, Worthen GS. Toll-IL-1 receptor domain-containing adaptor protein is critical for early lung immune responses against escherichia coli lipopolysaccharide and viable Escherichia coli. J Immunol 175 (11):7484–7495, 2005. - PubMed
  53. Togbe D, Aurore G, Noulin N, Quesniauz VFJ, Schnyder-Candrian S, Schnyder B, Vasseur V, Akira S, Hoebe K, Beutler B, et al. Nonredundant roles of TIRAP and MyD88 in airway response to endotoxin, independent of TRIF, IL-1 and IL-18 pathways. Lab Investig 86 (11):1126–1135, 2006. - PubMed
  54. Ve T, Vajjhala PR, Hedger A, Croll T, DiMaio F, Horsefield S, Yu X, Lavrencic P, Hassan Z, Morgan GP, et al. Structural basis of TIR-domain-assembly formation in MAL- and MyD88-dependent TLR4 signaling. Nat Struct Mol Biol 24 (9):743–751, 2017. - PubMed
  55. Mahita J, Sowdhamini R. Integrative modelling of TIR domain-containing adaptor molecule inducing interferon-β (TRIF) provides insights into its autoinhibited state. Biol Direct 12 (1):1–15, 2017. - PubMed
  56. Fitzgerald KA, Rowe DC, Barnes BJ, Cafrey DR, Visintin A, Latz E, Monks B, Pitha PM, Golenbock DT. LPS-TLR4 signaling to IRF-3/7 and NF-κB involves the toll adapters TRAM and TRIF. J Exp Med 198 (7):1043–1055, 2003. - PubMed
  57. Sasai M, Tatematsu M, Oshiumi H, Funami K, Matsumoto M, Hatakeyama S, Seya T. Direct binding of TRAF2 and TRAF6 to TICAM-1/TRIF adaptor participates in activation of the Toll-like receptor 3/4 pathway. Mol Immunol 47 (6):1283–1291, 2010. - PubMed
  58. Sharma S, TenOever BR, Grandvaux N, Zhou G-P, Lin R, Hiscott J. Triggering the interferon antiviral response through an IKK-related pathway. Science 300 (5622):1148–1151, 2003. - PubMed
  59. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, Coyle AJ, Liao S-M, Maniatis T. IKKE and TBKI are essential components of the IRF3 signalling pathway. Nat Immunol 4 (5):491–496, 2003. - PubMed
  60. Funami K, Sasai M, Ohba Y, Oshiumi H, Seya T, Matsumoto M. Spatiotemporal mobilization of Toll/IL-1 receptor domain-containing adaptor molecule-1 in response to dsRNA. J Immunol 179 (10):6867–6872, 2007. - PubMed
  61. Funami K, Sasai M, Oshiumi H, Seya T, Matsumoto M. Homo-oligomerization is essential for toll/interleukin-1 receptor domain-containing adaptor molecule-1-mediated NF-κB and interferon regulatory factor-3 activation. J Biol Chem 283 (26):18283–18291, 2008. - PubMed
  62. Yamamoto M, Sato S, Hemmi H, Hoshino K. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301 (5633):640–643, 2003. - PubMed
  63. Kaiser WJ, Upton JW, Long AB, Livingston-Rosanoff D, Daley-Bauer LP, Hakem R, Caspay T, Mocarski ES. RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471 (7338):368–373, 2011. - PubMed
  64. Sheedy FJ, O’Neill LAJ. The Troll in Toll: Mal and Tram as bridges for TLR2 and TLR4 signaling. J Leukoc Biol 82 (2):196–203, 2007. - PubMed
  65. McGettrick AF, Brint EK, Palsson-McDermott EM, Rowe DC, Golenbock DT, Gay NJ, Fitzgerald KA, O’Neill LAJ. Trif-related adapter molecule is phosphorylated by PKCε during Toll-like receptor 4 signaling. Proc Natl Acad Sci U S A 103 (24):9196–9201, 2006. - PubMed
  66. Rowe DC, McGettrick AF, Latz E, Monks BG, Gay NJ, Yamamoto M, Akira S, O’Neill LA, Fitzgerald KA, Golenbock DT. The myristoylation of TRIF-related adaptor molecule is essential for Toll-like receptor 4 signal transduction. Proc Natl Acad Sci U S A 103 (16):6299–6304, 2006. - PubMed
  67. Lundberg AM, Ketelhuth DFJ, Johansson ME, Gerdes N, Liu S, Yamamoto M, Akira S, Hansson GK. Toll-like receptor 3 and 4 signalling through the TRIF and TRAM adaptors in haematopoietic cells promotes atherosclerosis. Cardiovasc Res 99 (2):364–373, 2013. - PubMed
  68. Yamamoto M, Sato S, Hemmi H, Uematsu S, Hoshino K, Kaisho T, Takeuchi O, Takeda K, Akira S. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat Immunol 4 (11):1144–1150, 2003. - PubMed
  69. Hoebe K, Du X, Georgel P, Janssen K, Tabeta K, Kim SO, Goode J, Lin P, Mann N, Mudd S, et al. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424 (6950):743–748, 2003. - PubMed
  70. Mink M, Fogelgren B, Olszewski K, Maroy P, Csiszar K. A novel human gene (SARM) at chromosome 17q11 encodes a protein with a SAM motif and structural similarity to Armadillo/β-catenin that is conserved in mouse, Drosophila, and Caenorhabditis elegans. Genomics 74 (2):234–244, 2001. - PubMed
  71. Carty M, Goodbody R, Schröder M, Stack J, Moynagh PN, Bowie AG. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat Immunol 7 (10):1074–1081, 2006. - PubMed
  72. O’Neill LAJ, Fitzgerald KA, Bowie AG. The Toll-IL-1 receptor adaptor family grows to five members. Trends Immunol 24 (6):286–289, 2003. - PubMed
  73. Belinda LWC, Wei WX, Hanh BTH, Lei LX, Bow H, Ling DJ. SARM: a novel Toll-like receptor adaptor, is functionally conserved from arthropod to human. Mol Immunol 45 (6):1732–1742, 2008. - PubMed
  74. Carlsson E, Ding JL, Byrne B. SARM modulates MyD88-mediated TLR activation through BB-loop dependent TIR-TIR interactions. Biochim Biophys Acta 1863 (2):244–253, 2016. - PubMed
  75. Peng J, Yuan Q, Lin B, Panneerselvam P, Wang X, Luan XL, Lim SK, Leung BP, Ho B, Ding JL. SARM inhibits both TRIF- and MyD88-mediated AP-1 activation. Eur J Immunol 40 (6):1738–1747, 2010. - PubMed
  76. Piao W, Song C, Chen H, Diaz MAQ, Wahl LM, Fitzgerald KA, Li L, Medvedev E. Endotoxin tolerance dysregulates MyD88- and Toll/IL-1R domain-containing adapter inducing IFN-β-dependent pathways and increases expression of negative regulators of TLR signaling. J Leukoc Biol 86 (4):863–875, 2009. - PubMed
  77. Panneerselvam P, Ding JL. Beyond TLR signaling—the role of SARM in antiviral immune defense, apoptosis & development. Int Rev Immunol 34 (5):432–444, 2015. - PubMed
  78. Couillault C, Pujol N, Reboul J, Sabatier L, Guichou J-F, Kphara Y, Ewbank JJ. TLR-independent control of innate immunity in Caenorhabditis elegans by the TIR domain adaptor protein TIR-1, an ortholog of human SARM. Nat Immunol 5 (5):488–494, 2004. - PubMed
  79. Chuang CF, Bargmann CI. A Toll-interleukin 1 repeat protein at the synapse specifies asymmetric odorant receptor expression via ASK1 MAPKKK signaling. Genes Dev 19 (2):270–281, 2005. - PubMed
  80. Poltorak A, He X, Smirnova I, Liu MY, Van Huffel V, Du X, Birdwell D, Alejos E, Silva M, Galanos C, et al. Defective LPS signaling in C3H /HeJ and C57BL /10ScCr mice: mutations in Tlr4 gene. Science 282 (5396):2085–2088, 1998. - PubMed
  81. Smirnova I, Poltorak A, Chan EK, McBride C, Beutler B. Phylogenetic variation and polymorphism at the toll-like receptor 4 locus (TLR4). Genome Biol 1 (1):1–10, 2000. - PubMed
  82. Yang Y, Liu B, Dai J, Srivastava PK, Zammit DJ, Lefrancois L, Li Z. Heat shock protein gp96 is a master chaperone for toll-like receptors and is important in the innate function of macrophages. Immunity 26 (2):215–226, 2007. - PubMed
  83. Redl H, Bahrami S, Schlag G, Traber DL. Clinical detection of LPS and animal models of endotoxemia. Immunobiology 187 (3–5):330–345, 1993. - PubMed
  84. Raetz CRH, Whitfield C. Lipopolysaccharide endotoxins. Annu Rev Biochem 71 (1):635–700, 2002. - PubMed
  85. Vaure C, Liu Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front Immunol 5:1–15, 2014. - PubMed
  86. Park BS, Song DH, Kim HM, Choi BS, Lee H, Lee JO. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 458 (7242):1191–1195, 2009. - PubMed
  87. Kim HM, Park BS, Kim JI, Kim SE, Lee J, Oh SC, Enkhbaya P, Matsushima N, Lee H, Yoo OJ, et al. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist eritoran. Cell 130 (5):906–917, 2007. - PubMed
  88. Zanoni I, Ostuni R, Marek LR, Barresi S, Barbalat R, Barton GM, Granucci F, Kagan JC. CD14 controls the LPS-induced endocytosis of Toll-like Receptor 4. Cell 147 (4):868–880, 2011. - PubMed
  89. Vogel SN, Fenton M. Toll-like receptor 4 signalling: new perspectives on a complex signal-transduction problem. Biochem Soc Trans 31 (3):664–668, 2003. - PubMed
  90. Ve T, Williams SJ, Kobe B. Structure and function of Toll/interleukin-1 receptor/resistance protein (TIR) domains. Apoptosis 20 (2):250–261, 2015. - PubMed
  91. Xu Y, Tao X, Shen B, Horng T, Medzhitov R, Manley JL, Tong L. Structural basis for signal transduction by the toll/interleukin-1 receptor domains. Nature 408 (6808):111–115, 2000. - PubMed
  92. Jiang Z, Georgel P, Li C, Choe J, Crozat K, Rutschmann S, Du X, Bigby T, Mudd S, Sovath S, et al. Details of Toll-like receptor:adapter interaction revealed by germ-line mutagenesis. Proc Natl Acad Sci U S A 103 (29):10961–10966, 2006. - PubMed
  93. Gautam JK, Ashish, Comeau LD, Krueger JK, Smith MF. Structural and functional evidence for the role of the TLR2 DD loop in TLR1/TLR2 heterodimerization and signaling. J Biol Chem 281 (40):30132–30142, 2006. - PubMed
  94. Toshchakov VY, Fenton MJ, Vogel SN. Cutting edge: differential inhibition of TLR signaling pathways by cell-permeable peptides representing BB loops of TLRs. J Immunol 178 (5):2655–2660, 2007. - PubMed
  95. Bovijn C, Ulrichts P, De Smet AS, Catteeuw D, Beyaert R, Tavernier J, Peelman F. Identification of interaction sites for dimerization and adapter recruitment in toll/interleukin-1 receptor (TIR) domain of toll-like receptor 4. J Biol Chem 287 (6):4088–4098, 2012. - PubMed
  96. Nyman T, Stenmark P, Flodin S, Johansson I, Hammarström M, Nordlund PR. The crystal structure of the human toll-like receptor 10 cytoplasmic domain reveals a putative signaling dimer. J Biol Chem 283 (18):11861–11865, 2008. - PubMed
  97. Bartfai T, Behrens MM, Gaidarova S, Pemberton J, Shivanyuk A, Rebek J. A low molecular weight mimic of the Toll/IL-1 receptor/resistance domain inhibits IL-1 receptor-mediated responses. Proc Natl Acad Sci U S A 100 (13):7971–7976, 2003. - PubMed
  98. Loiarro M, Sette C, Gallo G, Ciacci A, Fanto N, Mastroianni D, Carminati P, Ruggiero V. Peptide-mediated interference of TIR domain dimerization in MyD88 inhibits interleukin-1-dependent activation of NF-κB. J Biol Chem 280 (16):15809–15814, 2005. - PubMed
  99. Loiarro M, Capolunghi F, Fantò N, Gallo G, Campo S, Arseni B, Carsetti R, Carinati P, De Santis R, Ruggiero V, et al. Pivotal Advance: inhibition of MyD88 dimerization and recruitment of IRAK1 and IRAK4 by a novel peptidomimetic compound. J Leukoc Biol 82 (4):801–810, 2007. - PubMed
  100. Amatullah H, Maron-Gutierrez T, Shan Y, Gupta S, Tsoporis JN, Varkouhi AK, Monteiro APT, He X, Yin J, Marshall JC, et al. Protective function of DJ-1/PARK7 in lipopolysaccaride and ventilator-induced acute lung injury. Redox Biol 38:101796, 2020. - PubMed
  101. Amatullah H, Shan Y, Beauchamp BL, Gali PL, Gupta S, Maron-Gutierrez T, Speck ER, Fox-Robichaud AE, Tsang JLY, Mei SHJ, et al. DJ-1/PARK7 Impairs bacterial clearance in sepsis. Am J Respir Crit Care Med 195 (7):889–905, 2017. - PubMed
  102. Wang Y, Chen T, Han C, He D, Liu H, An H, Cai Z, Cao X. Lysosome-associated small Rab GTPase Rab7b negatively regulates TLR4 signaling in macrophages by promoting lysosomal degradation of TLR4. Blood 110 (3):962–971, 2007. - PubMed
  103. Chuang TH, Ulevitch RJ. Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors. Nat Immunol 5 (5):495–502, 2004. - PubMed
  104. Boone DL, Turer EE, Lee EG, Ahmad E-C, Wheeler MT, Tsui C, Hurley P, Chien M, Chai S, Hitotsumatsu O, et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat Immunol 5 (10):1052–1060, 2004. - PubMed
  105. Tanaka T, Grusby MJ, Kaisho T. PDLIM2-mediated termination of transcription factor NF-κB activation by intranuclear sequestration and degradation of the p65 subunit. Nat Immunol 8 (6):584–591, 2007. - PubMed
  106. Wang C, Chen T, Zhang J, Yang M, Li N, Zu X, Cao X. The E3 ubiquitin ligase Nrdp1 “preferentially” promotes TLR-mediated production of type I interferon. Nat Immunol 10 (7):744–752, 2009. - PubMed
  107. Alexander DR. The CD45 tyrosine phosphatase: a positive and negative regulator of immune cell function. Semin Immunol 12 (4):349–359, 2000. - PubMed
  108. Justement L. Signal transduction via the B-cell antigen receptor: the role of protein tyrosine kinases and protein tyrosine phosphatases. Curr Top Microbiol Immunol 245:1–51, 1999. - PubMed
  109. Chiang GG, Sefton BM. Specific dephosphorylation of the Lck Tyrosine Protein Kinase at Tyr-394 by the SHP-1 protein-tyrosine phosphatase. J Biol Chem 276 (25):23173–23178, 2001. - PubMed
  110. Frank C, Burkhardt C, Imhof D, Ringel J, Zschornig O, Wieligmann K, Zacharias M, Bohmer F-D. Effective dephosphorylation of Src substrates by SHP-1. J Biol Chem 279 (12):11375–11383, 2004. - PubMed
  111. Dubois MJ, Bergeron S, Kim HJ, Dombrowski L, Perreault M, Fournes B, Faure R, Olivier M, Beauchemin N, Shulman GI, et al. The SHP-1 protein tyrosine phosphatase negatively modulates glucose homeostasis. Nat Med 12 (5):549–556, 2006. - PubMed
  112. Forget G, Matte C, Siminovitch KA, Rivest S, Pouliot P, Olivier M. Regulation of the Leishmania-induced innate inflammatory response by the protein tyrosine phosphatase SHP-1. Eur J Immunol 35 (6):1906–1917, 2005. - PubMed
  113. Lin SY, Raval S, Zhang Z, Deverill M, Siminovitch KA, Branch DR, Haimovich B. The protein-tyrosine phosphatase SHP-1 regulates the phosphorylation of α-actinin. J Biol Chem 279 (24):25755–25764, 2004. - PubMed
  114. Van Mirre E, Van Royen A, Hack CE. IVIg-mediated amelioration of murine ITP via FcγRIIb is not necessarily independent of SHIP-1 and SHP-1 activity. Blood 103 (5):1973–1974, 2003. - PubMed
  115. Hardin AO, Meals EA, Yi T, Knapp KM, English BK. SHP-1 inhibits LPS-mediated TNF and iNOS production in murine macrophages. Biochem Biophys Res Commun 342 (2):547–555, 2006. - PubMed
  116. Jia SH, Parodo J, Kapus A, Rotstein OD, Marshall JC. Dynamic regulation of neutrophil survival through tyrosine phosphorylation or dephosphorylation of caspase-8. J Biol Chem 283 (9):5402–5413, 2008. - PubMed
  117. Gupta S, Lee CM, Wang JF, Parodo J, Jia S-H, Hu J, Marshall JC. Heat-shock protein-90 prolongs septic neutrophil survival by protecting c-Src kinase and caspase-8 from proteasomal degradation. J Leukoc Biol 103 (5):933–944, 2018. - PubMed
  118. An H, Hou J, Zhou J, Zhao W, Xu H, Zheng Y, Yu Y, Liu S, Cao X. Phosphatase SHP-1 promotes TLR- and RIG-I-activated production of type I interferon by inhibiting the kinase IRAK1. Nat Immunol 9 (5):542–550, 2008. - PubMed
  119. Chen S, Yang J, Wei Y, Wei X. Epigenetic regulation of macrophages: from homeostasis maintenance to host defense. Cell Mol Immunol 17 (1):36–49, 2020. - PubMed
  120. Wang X, Zhu K, Li S, Liao Y, Du R, Zhang X, Shu H-B, Guo A-Y, Li L, Wu M. MLL1, α H3K4 methyltransferase, regulates the tnfa-stimulated activation of genes downstream of NF-kB. J Cell Sci 125 (17):4058–4066, 2012. - PubMed
  121. Xia M, Liu J, Wu X, Liu S, Li G, Han C, Song L, Li Z, Wang Q, Wang J, et al. Histone methyltransferase ash1l suppresses interleukin-6 production and inflammatory autoimmune diseases by inducing the ubiquitin-editing enzyme A20. Immunity 39 (3):470–481, 2013. - PubMed
  122. Liu Y, Zhang Q, Ding Y, Li X, Zhao D, Zhao K, Guo Z, Cao X. Histone lysine methyltransferase Ezh1 promotes TLR-triggered inflammatory cytokine production by suppressing Tollip. J Immunol 194 (6):2838–2846, 2015. - PubMed
  123. Levy D, Kuo AJ, Chang Y, Schaefer U, Kitson C, Cheung P, Espejo A, Zee BM, Liu CL, Tangsombatvisit S, et al. Lysine methylation of the NF-κ B subunit RelA by SETD6 couples activity of the histone methyltransferase GLP at chromatin to tonic repression of NF-κ B signaling. Nat Immunol 12 (1):29–36, 2011. - PubMed
  124. Ea CK, Baltimore D. Regulation of NF-κB activity through lysine monomethylation of p65. Proc Natl Acad Sci U S A 106 (45):18972–18977, 2009. - PubMed
  125. Bhutani N, Burns DM, Blau HM. DNA demethylation dynamics. Cell 146 (6):866–872, 2011. - PubMed
  126. Binnie A, Walsh CJ, Hu P, Dwivedi D, Fox-Robichaud A, Liaw PC, Tsang JLY, Batt J, Carrasqueiro G, Gupta S, et al. Epigenetic profiling in severe sepsis: a pilot study of DNA methylation profiles in critical illness. Crit Care Med 48 (2):142–150, 2020. - PubMed
  127. Donato RR, Cannon B, Sorci G, Riuzzi F, Hsu K, Weber DJ, Geczy CL. Functions of S100 proteins. Curr Mol Med 13 (1):24–57, 2012. - PubMed
  128. Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 81 (1):1–5, 2007. - PubMed
  129. Chan JK, Roth J, Oppenheim JJ, Tracey KJ, Vogl T, Feldmann M, Horwood N, Nanchahal J. Science in medicine Alarmins: awaiting a clinical response. J Clin Invest 122 (8):2711–2719, 2012. - PubMed
  130. Steinckwich N, Schenten V, Melchior C, Bréchard S, Tschirhart EJ. An essential role of STIM1, Orai1, and S100A8-A9 proteins for Ca 2+ signaling and FcγR-mediated phagosomal oxidative activity. J Immunol 186 (4):2182–2191, 2011. - PubMed
  131. Van Lent PLEM, Blom AB, Schelbergen RFP, Sloetjes A, Lafeber FPJG, Lems EF, Cats H, Vogl T, Roth J, van den Berg WB. Active involvement of alarmins S100A8 and S100A9 in the regulation of synovial activation and joint destruction during mouse and human osteoarthritis. Arthritis Rheum 64 (5):1466–1476, 2012. - PubMed
  132. Van Lent PLEM, Grevers L, Blom AB, Sloetjes A, Mort JS, Vogl T, Nacken W, van den Berg WB, Roth J. Myeloid-related proteins S100A8/S100A9 regulate joint inflammation and cartilage destruction during antigen-induced arthritis. Ann Rheum Dis 67 (12):1750–1758, 2008. - PubMed
  133. Grevers LC, De Vries TJ, Vogl T, Abdollahi-Roodsaz S, Sloetjes AW, Leenen PJM, Roth J, Everts V, van den Berg WB, van Lent PLEM. S100A8 enhances osteoclastic bone resorption in vitro through activation of Toll-like receptor 4: implications for bone destruction in murine antigen-induced arthritis. Arthritis Rheum 63 (5):1365–1375, 2011. - PubMed
  134. Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, van Zoelen MAD, Nacken W, Foell D, van der Poll T, Sorg C, et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 13 (9):1042–1049, 2007. - PubMed
  135. Sunahori K, Yamamura M, Yamana J, Takasugi K, Kawashima M, Yamamoto J, Chazin WJ, Nakatani Y, Yui S, Makino H. The S100A8/A9 heterodimer amplifies proinflammatory cytokine production by macrophages via activation of nuclear factor kappa B and p38 mitogen-activated protein kinase in rheumatoid arthritis. Arthritis Res Ther 8 (3):1–12, 2006. - PubMed
  136. Aguiar-Passeti T, Postol E, Sorg C, Mariano M. Epithelioid cells from foreign-body granuloma selectively express the calcium-binding protein MRP-14, a novel down-regulatory molecule of macrophage activation. J Leukoc Biol 62 (6):852–858, 1997. - PubMed
  137. Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bin MM, Ortiz M, Nacken W, Sorg C, Vogl T, et al. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein. J Exp Med 205 (10):2235–2249, 2008. - PubMed
  138. Korndörfer IP, Brueckner F, Skerra A. The crystal structure of the human (S100A8/S100A9)2 heterotetramer, calprotectin, illustrates how conformational changes of interacting α-helices can determine specific association of two EF-hand proteins. J Mol Biol 370 (5):887–898, 2007. - PubMed
  139. Kehl-Fie TE, Chitayat S, Hood MI, Damo S, Restrepo N, Garcia C, Munro KA, Chazin WJ, Skaar EP. Nutrient metal sequestration by calprotectin inhibits bacterial superoxide defense, enhancing neutrophil killing of Staphylococcus aureus. Cell Host Microbe 10 (2):158–164, 2011. - PubMed
  140. Björk P, Björk A, Vogl T, Stenstrom M, Liberg D, Olsson A, ROth J, Ivars F, Leanderson T. Identification of human S100A9 as a novel target for treatment of autoimmune disease via binding to quinoline-3-carboxamides. PLoS Biol 7 (4):0800–0812, 2009. - PubMed
  141. Kuipers MT, Vogl T, Aslami H, Jongsma G, van den Berg E, Vlaar APJ, Roelofs JJTH, Juffermans NP, Schultz MHJ, van der Poll T, et al. High levels of S100A8/A9 proteins aggravate ventilator-induced lung injury via TLR4 signaling. PLoS One 8 (7):1–11, 2013. - PubMed
  142. Tammaro A, Florquin S, Brok M, Claessen N, Butter LM, Teske GJD, de Boer OJ, Vogl T, Leemans JC, Dessing MC. S100A8/A9 promotes parenchymal damage and renal fibrosis in obstructive nephropathy. Clin Exp Immunol 193 (3):361–375, 2018. - PubMed
  143. Ichikawa M, Williams R, Wang L, Vogl T, Srikrishna G. S100A8/A9 activate key genes and pathways in colon tumor progression. Mol Cancer Res 9 (2):133–148, 2011. - PubMed
  144. Rohde D, Schön C, Boerries M, Didrihsone I, Ritterhoff J, Kubatzky KF, Volkers M, Herzog N, Mahler M, Tsoporis JN, et al. S100A1 is released from ischemic cardiomyocytes and signals myocardial damage via Toll-like receptor 4. EMBO Mol Med 6 (6):778–794, 2014. - PubMed
  145. Sorci G, Giovannini G, Riuzzi F, Bonifazi P, Zelante T, Zagarella S, Bistoni F, Donato R, Romani L. The danger signal S100B integrates pathogen- and danger-sensing pathways to restrain inflammation. PLoS Pathog 7 (3):e1001315, 2011. - PubMed
  146. Kuramochi M, Izawa T, Pervin M, Bondoc A, Kuwamura M, Yamate J. The kinetics of damage-associated molecular patterns (DAMPs) and toll-like receptors during thioacetamide-induced acute liver injury in rats. Exp Toxicol Pathol 68 (8):471–477, 2016. - PubMed

Publication Types

Grant support