Display options
Share it on

Front Cell Dev Biol. 2020 Dec 22;8:602956. doi: 10.3389/fcell.2020.602956. eCollection 2020.

ATR Kinase Is a Crucial Player Mediating the DNA Damage Response in .

Frontiers in cell and developmental biology

Paula Andrea Marin, Ricardo Obonaga, Raphael Souza Pavani, Marcelo Santos da Silva, Christiane Bezerra de Araujo, André Arruda Lima, Carla Cristi Avila, Igor Cestari, Carlos Renato Machado, Maria Carolina Elias

Affiliations

  1. Laboratory of Cell Cycle (LCC), Center of Toxins, Immune Response and Cell Signaling (CETICs), Butantan Institute, São Paulo, Brazil.
  2. Institute of Parasitology, McGill University, Montreal, QC, Canada.
  3. Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
  4. Biochemical and Immunology Department, Institute of Biomedical Science, Federal University of Minas Gerais, Belo Horizonte, Brazil.

PMID: 33415107 PMCID: PMC7783291 DOI: 10.3389/fcell.2020.602956

Abstract

DNA double-strand breaks (DSBs) are among the most deleterious lesions that threaten genome integrity. To address DSBs, eukaryotic cells of model organisms have evolved a complex network of cellular pathways that are able to detect DNA damage, activate a checkpoint response to delay cell cycle progression, recruit the proper repair machinery, and resume the cell cycle once the DNA damage is repaired. Cell cycle checkpoints are primarily regulated by the apical kinases ATR and ATM, which are conserved throughout the eukaryotic kingdom.

Copyright © 2020 Marin, Obonaga, Pavani, da Silva, de Araujo, Lima, Avila, Cestari, Machado and Elias.

Keywords: ATR; DNA damage response; DNA double-strand breaks; RAD51; Trypanosoma brucei; checkpoint; γH2A

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Nat Rev Mol Cell Biol. 2008 Aug;9(8):616-27 - PubMed
  2. Science. 2007 May 25;316(5828):1160-6 - PubMed
  3. Genes Dev. 2000 Feb 15;14(4):397-402 - PubMed
  4. J Biol Chem. 2004 Jul 2;279(27):28071-81 - PubMed
  5. Science. 2002 May 3;296(5569):922-7 - PubMed
  6. PLoS Negl Trop Dis. 2016 Dec 16;10(12):e0005181 - PubMed
  7. Nucleic Acids Res. 2008 May;36(8):2608-18 - PubMed
  8. Mol Biochem Parasitol. 2003 Apr 25;128(1):115-8 - PubMed
  9. Oncogene. 2006 Jun 29;25(28):3894-904 - PubMed
  10. Cold Spring Harb Perspect Biol. 2015 Nov 02;7(11): - PubMed
  11. Cell Res. 2008 Jan;18(1):134-47 - PubMed
  12. Mol Microbiol. 2008 Jun;68(5):1237-51 - PubMed
  13. Microbiol Mol Biol Rev. 2014 Mar;78(1):40-73 - PubMed
  14. Cell Rep. 2020 Jan 21;30(3):836-851.e5 - PubMed
  15. Nat Genet. 2001 Mar;27(3):247-54 - PubMed
  16. Cell Cycle. 2005 Jun;4(6):737-40 - PubMed
  17. Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3184-9 - PubMed
  18. Mol Biochem Parasitol. 2002 Nov-Dec;125(1-2):11-21 - PubMed
  19. Mol Cell. 2009 Mar 13;33(5):547-58 - PubMed
  20. Genes Dev. 2013 Jul 15;27(14):1610-23 - PubMed
  21. Science. 2003 Jun 6;300(5625):1542-8 - PubMed
  22. Cell. 2013 Nov 21;155(5):1088-103 - PubMed
  23. DNA Repair (Amst). 2009 Sep 2;8(9):1004-8 - PubMed
  24. Mol Cell. 2017 Jan 19;65(2):336-346 - PubMed
  25. Nucleic Acids Res. 2018 Sep 19;46(16):8311-8325 - PubMed
  26. Nucleic Acids Res. 2010 Apr;38(6):1821-31 - PubMed
  27. Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10592-7 - PubMed
  28. Nat Cell Biol. 2006 Jan;8(1):37-45 - PubMed
  29. Nat Rev Mol Cell Biol. 2017 Oct;18(10):622-636 - PubMed
  30. Cell Cycle. 2006 May;5(10):1116-22 - PubMed
  31. Science. 2000 May 26;288(5470):1425-9 - PubMed
  32. EMBO J. 2009 Oct 21;28(20):3067-73 - PubMed
  33. Mol Biochem Parasitol. 2014 Jul;195(2):123-9 - PubMed
  34. Nature. 2009 Oct 22;461(7267):1071-8 - PubMed
  35. Nat Rev Mol Cell Biol. 2013 Apr;14(4):197-210 - PubMed
  36. Nucleic Acids Res. 2005 Dec 02;33(21):6906-19 - PubMed
  37. Mol Cell. 2009 Dec 25;36(6):954-69 - PubMed
  38. Mol Biochem Parasitol. 2009 Aug;166(2):194-7 - PubMed
  39. BMC Genomics. 2005 Sep 15;6:127 - PubMed
  40. Sci Rep. 2018 Mar 29;8(1):5405 - PubMed
  41. Nature. 2000 Nov 23;408(6811):433-9 - PubMed
  42. J Exp Med. 2006 Feb 20;203(2):297-303 - PubMed
  43. PLoS Pathog. 2014 Jan;10(1):e1003886 - PubMed
  44. Cancer Res. 2004 Apr 1;64(7):2390-6 - PubMed
  45. Mol Cell Biol. 2007 Aug;27(16):5806-18 - PubMed
  46. Nucleic Acids Res. 2013 Dec;41(22):10334-44 - PubMed
  47. Nucleic Acids Res. 2018 Mar 16;46(5):2479-2494 - PubMed
  48. mBio. 2019 Jul 9;10(4): - PubMed
  49. Genes Dev. 2008 Jun 1;22(11):1478-89 - PubMed
  50. Mol Biochem Parasitol. 2012 May;183(1):78-83 - PubMed
  51. Nucleic Acids Res. 2015 Feb 18;43(3):1659-70 - PubMed
  52. PLoS Negl Trop Dis. 2017 Apr 20;11(4):e0005454 - PubMed
  53. J Biol Chem. 2013 Mar 8;288(10):7086-95 - PubMed
  54. Mol Cell. 2007 Dec 14;28(5):739-45 - PubMed
  55. Mol Biochem Parasitol. 2016 May;207(1):23-32 - PubMed
  56. PLoS One. 2018 Sep 28;13(9):e0205033 - PubMed
  57. J Eukaryot Microbiol. 2017 Nov;64(6):756-770 - PubMed
  58. Mutat Res. 2013 Oct;750(1-2):5-14 - PubMed
  59. J Biol Chem. 2005 Apr 8;280(14):14085-96 - PubMed
  60. Genes Dev. 2007 Jun 15;21(12):1472-7 - PubMed
  61. DNA Cell Biol. 2011 Apr;30(4):219-27 - PubMed
  62. PLoS Pathog. 2018 Nov 15;14(11):e1007321 - PubMed
  63. Mol Cell. 2015 Sep 17;59(6):1011-24 - PubMed
  64. Cancer Cell. 2003 Mar;3(3):247-58 - PubMed
  65. J Cell Biol. 2017 Mar 6;216(3):623-639 - PubMed
  66. Genes Dev. 2001 Sep 1;15(17):2177-96 - PubMed
  67. Nat Rev Genet. 2001 Mar;2(3):196-206 - PubMed
  68. Genes Dev. 1999 Nov 1;13(21):2875-88 - PubMed
  69. J Biol Chem. 2001 Nov 9;276(45):42462-7 - PubMed
  70. J Biol Chem. 1998 Mar 6;273(10):5858-68 - PubMed
  71. Eukaryot Cell. 2007 Oct;6(10):1773-81 - PubMed
  72. Curr Biol. 2000 Apr 20;10(8):479-82 - PubMed

Publication Types