Display options
Share it on

Front Cell Dev Biol. 2020 Dec 22;8:615264. doi: 10.3389/fcell.2020.615264. eCollection 2020.

The CXCR4/SDF-1 Axis in the Development of Facial Expression and Non-somitic Neck Muscles.

Frontiers in cell and developmental biology

Imadeldin Yahya, Gabriela Morosan-Puopolo, Beate Brand-Saberi

Affiliations

  1. Department of Anatomy and Molecular Embryology, Ruhr University Bochum, Bochum, Germany.
  2. Department of Anatomy, Faculty of Veterinary Medicine, University of Khartoum, Khartoum, Sudan.

PMID: 33415110 PMCID: PMC7783292 DOI: 10.3389/fcell.2020.615264

Abstract

Trunk and head muscles originate from distinct embryonic regions: while the trunk muscles derive from the paraxial mesoderm that becomes segmented into somites, the majority of head muscles develops from the unsegmented cranial paraxial mesoderm. Differences in the molecular control of trunk versus head and neck muscles have been discovered about 25 years ago; interestingly, differences in satellite cell subpopulations were also described more recently. Specifically, the satellite cells of the facial expression muscles share properties with heart muscle. In adult vertebrates, neck muscles span the transition zone between head and trunk. Mastication and facial expression muscles derive from the mesodermal progenitor cells that are located in the first and second branchial arches, respectively. The cucullaris muscle (non-somitic neck muscle) originates from the posterior-most branchial arches. Like other subclasses within the chemokines and chemokine receptors, CXCR4 and SDF-1 play essential roles in the migration of cells within a number of various tissues during development. CXCR4 as receptor together with its ligand SDF-1 have mainly been described to regulate the migration of the trunk muscle progenitor cells. This review first underlines our recent understanding of the development of the facial expression (second arch-derived) muscles, focusing on new insights into the migration event and how this embryonic process is different from the development of mastication (first arch-derived) muscles. Other muscles associated with the head, such as non-somitic neck muscles derived from muscle progenitor cells located in the posterior branchial arches, are also in the focus of this review. Implications on human muscle dystrophies affecting the muscles of face and neck are also discussed.

Copyright © 2020 Yahya, Morosan-Puopolo and Brand-Saberi.

Keywords: CXCR4; SDF-1; cell migration; facial expression muscles; non-somitic neck muscles

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Sci Rep. 2020 Mar 19;10(1):5049 - PubMed
  2. Stem Cells. 2003;21(3):363-71 - PubMed
  3. Anat Embryol (Berl). 2000 Nov;202(5):375-83 - PubMed
  4. Development. 2008 Feb;135(4):647-57 - PubMed
  5. J Anat. 2005 Nov;207(5):575-601 - PubMed
  6. Dev Cell. 2009 Jun;16(6):779-80 - PubMed
  7. Infect Genet Evol. 2014 Jul;25:146-56 - PubMed
  8. Histochem Cell Biol. 2014 Nov;142(5):473-88 - PubMed
  9. Stem Cell Reports. 2016 Jan 12;6(1):26-34 - PubMed
  10. Dev Cell. 2014 Feb 10;28(3):225-38 - PubMed
  11. J Biol Chem. 2003 Jun 13;278(24):21631-8 - PubMed
  12. J Morphol. 2017 Apr;278(4):450-463 - PubMed
  13. Development. 2011 May;138(10):1947-55 - PubMed
  14. Genes Dev. 2005 Sep 15;19(18):2187-98 - PubMed
  15. Int J Dev Biol. 2016;60(1-3):29-38 - PubMed
  16. Development. 2012 Mar;139(5):958-67 - PubMed
  17. Front Immunol. 2020 Aug 28;11:2109 - PubMed
  18. PLoS One. 2012;7(11):e47394 - PubMed
  19. Hum Mol Genet. 2004 Nov 15;13(22):2829-40 - PubMed
  20. Dev Dyn. 2010 Jun;239(6):1622-31 - PubMed
  21. Arch Immunol Ther Exp (Warsz). 2006 Mar-Apr;54(2):121-35 - PubMed
  22. Neurology. 2014 Sep 16;83(12):1056-9 - PubMed
  23. Exp Cell Res. 2012 Oct 15;318(17):2178-90 - PubMed
  24. Nature. 2015 Apr 23;520(7548):466-73 - PubMed
  25. Front Immunol. 2015 Aug 21;6:429 - PubMed
  26. Dev Dyn. 1998 Aug;212(4):495-508 - PubMed
  27. Trends Genet. 2007 Aug;23(8):365-9 - PubMed
  28. Results Probl Cell Differ. 2015;56:1-23 - PubMed
  29. Sci Rep. 2017 Dec 8;7(1):17279 - PubMed
  30. Semin Cell Dev Biol. 2015 Aug;44:115-25 - PubMed
  31. Development. 1996 Sep;122(9):2769-78 - PubMed
  32. Development. 2002 Sep;129(18):4249-60 - PubMed
  33. Histochem Cell Biol. 2020 Oct 10;: - PubMed
  34. Stem Cells Dev. 2014 Jun 15;23(12):1417-27 - PubMed
  35. Biol Open. 2018 Sep 19;7(9): - PubMed
  36. J Neuroimmunol. 2008 Jul 31;198(1-2):31-8 - PubMed
  37. Trends Cardiovasc Med. 2000 Nov;10(8):345-52 - PubMed
  38. Front Immunol. 2020 Jan 10;10:3057 - PubMed
  39. Development. 2016 Feb 15;143(4):582-8 - PubMed
  40. Development. 2010 Oct;137(19):3269-79 - PubMed
  41. Nature. 2005 Jul 21;436(7049):347-55 - PubMed
  42. Anat Embryol (Berl). 2005 Aug;210(1):35-41 - PubMed
  43. Acta Histochem. 2008;110(2):97-108 - PubMed
  44. J Anat. 2016 Oct;229(4):536-48 - PubMed
  45. Front Microbiol. 2018 Oct 18;9:2510 - PubMed
  46. Development. 2010 Sep 1;137(17):2961-71 - PubMed
  47. J Cell Sci. 2007 Nov 15;120(Pt 22):4050-9 - PubMed
  48. Cell Stem Cell. 2013 May 2;12(5):587-601 - PubMed
  49. Stem Cell Res Ther. 2019 Nov 21;10(1):343 - PubMed
  50. Circ Res. 2013 Aug 16;113(5):505-16 - PubMed
  51. PLoS One. 2009;4(2):e4381 - PubMed
  52. Prog Clin Biol Res. 1982;110 Pt B:281-91 - PubMed
  53. Elife. 2018 Nov 19;7: - PubMed
  54. Trends Immunol. 2006 Feb;27(2):80-7 - PubMed
  55. Evol Dev. 2017 Nov;19(6):263-276 - PubMed
  56. Zoological Lett. 2019 Jun 10;5:17 - PubMed
  57. Development. 2011 Jun;138(12):2401-15 - PubMed
  58. Cell Mol Life Sci. 2020 May;77(10):1933-1945 - PubMed
  59. MethodsX. 2020 Jan 14;7:100792 - PubMed
  60. Dev Dyn. 2008 Mar;237(3):592-601 - PubMed
  61. Muscle Nerve. 2009 Oct;40(4):562-72 - PubMed
  62. Int J Dev Biol. 2008;52(1):87-92 - PubMed
  63. Exp Hematol. 2006 Sep;34(9):1262-70 - PubMed
  64. Cell. 1997 Apr 4;89(1):127-38 - PubMed
  65. Stem Cell Res Ther. 2015 Mar 24;6:46 - PubMed
  66. J Neurosci. 2010 Sep 29;30(39):13078-88 - PubMed
  67. PLoS One. 2012;7(12):e52244 - PubMed
  68. Front Pharmacol. 2018 Dec 04;9:1294 - PubMed
  69. Clin Cancer Res. 2010 Jun 1;16(11):2927-31 - PubMed
  70. Front Cell Dev Biol. 2020 Aug 21;8:771 - PubMed
  71. Dev Dyn. 2006 May;235(5):1194-218 - PubMed
  72. Elife. 2016 Apr 19;5:e09972 - PubMed
  73. Mol Cell Neurosci. 2005 Dec;30(4):494-505 - PubMed
  74. Clin Cancer Res. 2015 Oct 1;21(19):4278-85 - PubMed
  75. Dev Dyn. 2010 Oct;239(10):2769-77 - PubMed
  76. Development. 1996 Mar;122(3):831-8 - PubMed
  77. Dev Cell. 2014 Dec 22;31(6):690-706 - PubMed
  78. Dev Cell. 2009 Jun;16(6):810-21 - PubMed
  79. Annu Rev Cell Dev Biol. 2007;23:645-73 - PubMed
  80. Dev Cell. 2015 Sep 28;34(6):694-704 - PubMed
  81. Immunol Lett. 2016 Sep;177:6-15 - PubMed
  82. Science. 2002 Dec 20;298(5602):2378-81 - PubMed
  83. Am J Anat. 1988 Dec;183(4):277-93 - PubMed
  84. Front Aging Neurosci. 2015 May 19;7:62 - PubMed
  85. Proc Natl Acad Sci U S A. 1997 Mar 4;94(5):1925-30 - PubMed
  86. Proc Natl Acad Sci U S A. 2015 Feb 3;112(5):1446-51 - PubMed
  87. Biol Cell. 2012 Dec;104(12):722-37 - PubMed
  88. Semin Cell Dev Biol. 2019 Jul;91:31-44 - PubMed
  89. J Morphol. 2018 Apr;279(4):494-516 - PubMed
  90. Development. 2006 May;133(10):1943-53 - PubMed
  91. Dev Dyn. 2006 Nov;235(11):3007-15 - PubMed
  92. J Anat. 2013 Jan;222(1):67-78 - PubMed
  93. Cell Adh Migr. 2017 Jul 4;11(4):384-398 - PubMed
  94. Proc Natl Acad Sci U S A. 2007 Apr 3;104(14):5907-12 - PubMed
  95. Dev Cell. 2009 Jun;16(6):822-32 - PubMed

Publication Types