Display options
Share it on

Pharmaceutics. 2020 Dec 18;12(12). doi: 10.3390/pharmaceutics12121231.

Therapeutic Angiogenesis by a "Dynamic Duo": Simultaneous Expression of HGF and VEGF165 by Novel Bicistronic Plasmid Restores Blood Flow in Ischemic Skeletal Muscle.

Pharmaceutics

Ekaterina Slobodkina, Maria Boldyreva, Maxim Karagyaur, Roman Eremichev, Natalia Alexandrushkina, Vadim Balabanyan, Zhanna Akopyan, Yelena Parfyonova, Vsevolod Tkachuk, Pavel Makarevich

Affiliations

  1. Faculty of Medicine, Lomonosov Moscow State University, 117192 Moscow, Russia.
  2. Institute for Regenerative Medicine, Medical Research and Education Centre, Lomonosov Moscow State University, 119192 Moscow, Russia.
  3. National Medical Research Center of Cardiology Russian Ministry of Health, 121552 Moscow, Russia.
  4. Faculty of Biology and Biotechnology, National Research University Higher School of Economics (HSE), 109028 Moscow, Russia.

PMID: 33353116 PMCID: PMC7766676 DOI: 10.3390/pharmaceutics12121231

Abstract

Therapeutic angiogenesis is a promising strategy for relief of ischemic conditions, and gene delivery was used to stimulate blood vessels' formation and growth. We have previously shown that intramuscular injection of a mixture containing plasmids encoding vascular endothelial growth factor (VEGF)165 and hepatocyte growth factor (HGF) leads to restoration of blood flow in mouse ischemic limb, and efficacy of combined delivery was superior to each plasmid administered alone. In this work, we evaluated different approaches for co-expression of HGF and VEGF165 genes in a panel of candidate plasmid DNAs (pDNAs) with internal ribosome entry sites (IRESs), a bidirectional promoter or two independent promoters for each gene of interest. Studies in HEK293T culture showed that all plasmids provided synthesis of HGF and VEGF165 proteins and stimulated capillary formation by human umbilical vein endothelial cells (HUVEC), indicating the biological potency of expressed factors. Tests in skeletal muscle explants showed a dramatic difference and most plasmids failed to express HGF and VEGF165 in a significant quantity. However, a bicistronic plasmid with two independent promoters (cytomegalovirus (CMV) for HGF and chicken b-actin (CAG) for VEGF165) provided expression of both grow factors in skeletal muscle at an equimolar ratio. Efficacy tests of bicistronic plasmid were performed in a mouse model of hind limb ischemia. Intramuscular administration of plasmid induced significant restoration of perfusion compared to an empty vector and saline. These findings were supported by increased CD31+ capillary density in animals that received pHGF/VEGF. Overall, our study reports a first-in-class candidate gene therapy drug to deliver two pivotal angiogenic growth factors (HGF and VEGF165) with properties that provide basis for future development of treatment for an unmet medical need-peripheral artery disease and associated limb ischemia.

Keywords: HGF; VEGF; angiogenic growth factors; bicistronic vector; gene therapy; limb ischemia; plasmids; therapeutic angiogenesis

References

  1. Transplantation. 2010 Oct 15;90(7):725-31 - PubMed
  2. Curr Gene Ther. 2004 Mar;4(1):15-31 - PubMed
  3. Front Oncol. 2019 Apr 24;9:297 - PubMed
  4. Gene Ther. 2011 Aug;18(8):817-26 - PubMed
  5. Cell. 2002 Jun 28;109(7):807-9 - PubMed
  6. J Pharmacol Exp Ther. 2020 Mar;372(3):248-255 - PubMed
  7. Curr Opin Immunol. 2000 Feb;12(1):35-43 - PubMed
  8. Cell Death Differ. 2015 Apr;22(4):526-39 - PubMed
  9. Circ Res. 2003 Nov 28;93(11):1066-73 - PubMed
  10. Toxicol Sci. 2017 Feb;155(2):315-325 - PubMed
  11. Int Angiol. 2011 Apr;30(2):140-9 - PubMed
  12. Nucleic Acids Res. 1986 Dec 9;14(23):9381-96 - PubMed
  13. Front Physiol. 2018 Mar 07;9:174 - PubMed
  14. PLoS One. 2011;6(4):e18556 - PubMed
  15. Biochem Biophys Res Commun. 2007 Sep 7;360(4):752-8 - PubMed
  16. Ann Vasc Surg. 2019 Oct;60:346-354 - PubMed
  17. Am J Pathol. 2001 Mar;158(3):1111-20 - PubMed
  18. Mol Ther. 2004 Mar;9(3):464-74 - PubMed
  19. Nucleic Acids Res. 2019 Oct 10;47(18):e106 - PubMed
  20. Mol Ther. 2008 May;16(5):972-978 - PubMed
  21. Front Physiol. 2014 Apr 16;5:149 - PubMed
  22. Microbiol Mol Biol Rev. 2015 Jun;79(2):225-41 - PubMed
  23. Nucleic Acids Res. 2001 Aug 15;29(16):3327-34 - PubMed
  24. Int J Mol Sci. 2019 Jun 24;20(12): - PubMed
  25. Gene Ther. 2002 Mar;9(5):337-44 - PubMed
  26. Hypertension. 2001 May;37(5):1341-8 - PubMed
  27. Br J Cancer. 2007 Aug 6;97(3):368-77 - PubMed
  28. Mol Ther. 2010 Sep;18(9):1640-9 - PubMed
  29. Methods Mol Biol. 2008;433:115-25 - PubMed
  30. Ann Clin Transl Neurol. 2015 May;2(5):465-78 - PubMed
  31. PLoS One. 2018 May 22;13(5):e0197566 - PubMed
  32. Adv Genet. 2005;54:3-20 - PubMed
  33. Mol Ther. 2000 Apr;1(4):376-82 - PubMed
  34. Nat Rev Nephrol. 2019 Sep;15(9):559-575 - PubMed
  35. Sci Rep. 2016 Aug 26;6:32137 - PubMed
  36. Lancet. 1996 Aug 10;348(9024):370-4 - PubMed
  37. Cell. 1984 Dec;39(3 Pt 2):449-67 - PubMed
  38. Hum Gene Ther. 2020 Jul;31(13-14):695-696 - PubMed
  39. Biomed Pharmacother. 2018 May;101:682-690 - PubMed
  40. Gene Ther. 2011 Jun;18(6):631-6 - PubMed
  41. J Vasc Surg. 2009 Sep;50(3):608-16 - PubMed
  42. Scand Cardiovasc J. 2007 Apr;41(2):95-101 - PubMed
  43. Cancers (Basel). 2018 Jan 29;10(2): - PubMed
  44. Gene Ther. 2016 Mar;23(3):306-12 - PubMed
  45. Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11025-30 - PubMed
  46. Mol Pharmacol. 2006 Nov;70(5):1488-93 - PubMed
  47. Mol Ther. 2007 Nov;15(11):1939-46 - PubMed
  48. Hum Gene Ther. 1998 Feb 10;9(3):287-93 - PubMed
  49. PLoS One. 2012;7(6):e38776 - PubMed
  50. Biochem Biophys Res Commun. 2002 Oct 18;298(1):80-6 - PubMed
  51. Immunology. 2002 Mar;105(3):245-51 - PubMed

Publication Types

Grant support