Display options
Share it on

Plants (Basel). 2020 Dec 18;9(12). doi: 10.3390/plants9121801.

The Role of Symbiotic Microorganisms, Nutrient Uptake and Rhizosphere Bacterial Community in Response of Pea (.

Plants (Basel, Switzerland)

Andrey A Belimov, Alexander I Shaposhnikov, Darya S Syrova, Arina A Kichko, Polina V Guro, Oleg S Yuzikhin, Tatiana S Azarova, Anna L Sazanova, Edgar A Sekste, Vladimir A Litvinskiy, Vladimir V Nosikov, Aleksey A Zavalin, Evgeny E Andronov, Vera I Safronova

Affiliations

  1. All-Russia Research Institute for Agricultural Microbiology, Podbelskogo sh. 3, Pushkin, 196608 Saint-Petersburg, Russia.
  2. Pryanishnikov Institute of Agrochemisty, Pryanishnikova str. 31A, 127434 Moscow, Russia.
  3. Department of Biology, Saint-Petersburg State University, University Embankment, 199034 Saint-Petersburg, Russia.

PMID: 33353122 PMCID: PMC7766424 DOI: 10.3390/plants9121801

Abstract

Aluminium being one of the most abundant elements is very toxic for plants causing inhibition of nutrient uptake and productivity. The aim of this study was to evaluate the potential of microbial consortium consisting of arbuscular mycorrhizal fungus (AMF), rhizobia and PGPR for counteracting negative effects of Al toxicity on four pea genotypes differing in Al tolerance. Pea plants were grown in acid soil supplemented with AlCl

Keywords: PGPR; aluminium; mycorrhiza; nodulation; nutrient uptake; pea; rhizosphere microbiome; soil acidity

References

  1. Appl Environ Microbiol. 1992 Apr;58(4):1095-101 - PubMed
  2. Annu Rev Plant Biol. 2015;66:571-98 - PubMed
  3. Front Microbiol. 2020 Jun 03;11:968 - PubMed
  4. World J Microbiol Biotechnol. 2013 Nov;29(11):2181-93 - PubMed
  5. J Plant Physiol. 2015 Jul 20;184:1-7 - PubMed
  6. World J Microbiol Biotechnol. 2012 May;28(5):1947-59 - PubMed
  7. Front Microbiol. 2017 Jun 02;8:971 - PubMed
  8. Annu Rev Plant Biol. 2006;57:233-66 - PubMed
  9. Planta. 2018 Jan;247(1):27-39 - PubMed
  10. Plant Physiol. 2006 Jun;141(2):674-84 - PubMed
  11. New Phytol. 2008;178(4):852-62 - PubMed
  12. Plant Physiol. 2013 Mar;161(3):1347-61 - PubMed
  13. Nat Biotechnol. 2019 Aug;37(8):852-857 - PubMed
  14. Environ Pollut. 1989;61(2):107-25 - PubMed
  15. Biol Fertil Soils. 2018;54(3):309-318 - PubMed
  16. Plant Physiol. 2004 Sep;136(1):2887-94 - PubMed
  17. Plants (Basel). 2020 Jul 31;9(8): - PubMed
  18. Indian J Microbiol. 2017 Jun;57(2):195-200 - PubMed
  19. Annu Rev Plant Biol. 2004;55:459-93 - PubMed
  20. J Integr Plant Biol. 2014 Mar;56(3):221-30 - PubMed
  21. Front Plant Sci. 2015 Jul 30;6:587 - PubMed
  22. Cell Mol Biol (Noisy-le-grand). 2017 Jul 31;63(6):79-82 - PubMed
  23. Trends Plant Sci. 2001 Jun;6(6):273-8 - PubMed
  24. Plant Sci. 2012 Apr;185-186:1-8 - PubMed
  25. Nat Methods. 2016 Jul;13(7):581-3 - PubMed
  26. Plant Physiol. 2005 May;138(1):297-303 - PubMed
  27. mSystems. 2018 Apr 17;3(3): - PubMed
  28. PLoS One. 2013 Apr 22;8(4):e61217 - PubMed
  29. Genome Biol. 2014;15(12):550 - PubMed
  30. Mycorrhiza. 2013 Apr;23(3):167-83 - PubMed
  31. Microbiome. 2018 Aug 9;6(1):140 - PubMed
  32. Curr Microbiol. 2000 Jul;41(1):5-10 - PubMed
  33. Front Plant Sci. 2020 Jan 10;10:1697 - PubMed
  34. Chem Rev. 1996 Nov 7;96(7):2983-3012 - PubMed
  35. Mycorrhiza. 2019 Oct;29(5):475-487 - PubMed
  36. Front Microbiol. 2020 May 28;11:1177 - PubMed
  37. ISME J. 2011 May;5(5):908-17 - PubMed
  38. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 - PubMed
  39. Trends Plant Sci. 2012 Jun;17(6):341-8 - PubMed
  40. PeerJ. 2019 Aug 23;7:e7495 - PubMed
  41. Biometals. 1996 Jul;9(3):311-6 - PubMed
  42. Ecotoxicol Environ Saf. 2020 Jan 15;187:109828 - PubMed
  43. Appl Environ Microbiol. 2005 Dec;71(12):8228-35 - PubMed
  44. FEMS Microbiol Lett. 2007 Nov;276(1):1-11 - PubMed
  45. J Exp Bot. 2002 May;53(371):1177-85 - PubMed
  46. Physiol Mol Biol Plants. 2017 Oct;23(4):851-863 - PubMed

Publication Types

Grant support