Display options
Share it on

Front Physiol. 2020 Dec 29;11:595486. doi: 10.3389/fphys.2020.595486. eCollection 2020.

Measuring Peripheral Chemoreflex Hypersensitivity in Heart Failure.

Frontiers in physiology

Daniel A Keir, James Duffin, John S Floras

Affiliations

  1. University Health Network and Mount Sinai Hospital Division of Cardiology and Department of Medicine, University of Toronto, Toronto General Research Institute, Toronto, ON, Canada.
  2. School of Kinesiology, The University of Western Ontario, London, ON, Canada.
  3. Department of Anesthesia and Pain Management, University of Toronto, Toronto, ON, Canada.
  4. Department of Physiology, University of Toronto, Toronto, ON, Canada.
  5. Thornhill Research Inc., Toronto, ON, Canada.

PMID: 33447244 PMCID: PMC7802759 DOI: 10.3389/fphys.2020.595486

Abstract

Heart failure with reduced ejection fraction (HFrEF) induces chronic sympathetic activation. This disturbance is a consequence of both compensatory reflex disinhibition in response to lower cardiac output and patient-specific activation of one or more excitatory stimuli. The result is the net adrenergic output that exceeds homeostatic need, which compromises cardiac, renal, and vascular function and foreshortens lifespan. One such sympatho-excitatory mechanism, evident in ~40-45% of those with HFrEF, is the augmentation of carotid (peripheral) chemoreflex ventilatory and sympathetic responsiveness to reductions in arterial oxygen tension and acidosis. Recognition of the contribution of increased chemoreflex gain to the pathophysiology of HFrEF and to patients' prognosis has focused attention on targeting the carotid body to attenuate sympathetic drive, alleviate heart failure symptoms, and prolong life. The current challenge is to identify those patients most likely to benefit from such interventions. Two assumptions underlying contemporary test protocols are that the ventilatory response to acute hypoxic exposure quantifies accurately peripheral chemoreflex sensitivity and that the unmeasured sympathetic response mirrors the determined ventilatory response. This Perspective questions both assumptions, illustrates the limitations of conventional transient hypoxic tests for assessing peripheral chemoreflex sensitivity and demonstrates how a modified rebreathing test capable of comprehensively quantifying both the ventilatory and sympathoneural efferent responses to peripheral chemoreflex perturbation, including their sensitivities and recruitment thresholds, can better identify individuals most likely to benefit from carotid body intervention.

Copyright © 2020 Keir, Duffin and Floras.

Keywords: carotid body; chemoreceptors; hypercapnia; hypoxia; sympathetic nervous system; ventilation

Conflict of interest statement

JD has equity in Thornhill Medical and receives salary support from Thornhill Medical. Thornhill Medical provided no other support for the study. The remaining authors declare that the research was co

References

  1. Front Physiol. 2014 Nov 24;5:438 - PubMed
  2. Respir Physiol Neurobiol. 2011 Jul 31;177(2):71-9 - PubMed
  3. Circulation. 1999 Mar 9;99(9):1183-9 - PubMed
  4. Annu Rev Physiol. 2020 Feb 10;82:127-149 - PubMed
  5. J Hypertens. 2018 May;36(5):1188-1194 - PubMed
  6. J Physiol. 2009 Feb 15;587(Pt 4):883-96 - PubMed
  7. J Physiol. 2017 Jan 1;595(1):43-51 - PubMed
  8. J Physiol. 2014 Jan 15;592(2):391-408 - PubMed
  9. J Hypertens. 2012 Apr;30(4):753-60 - PubMed
  10. Exp Physiol. 2015 Feb 1;100(2):136-42 - PubMed
  11. JACC Basic Transl Sci. 2016 Aug 29;1(5):313-324 - PubMed
  12. Can J Appl Physiol. 1997 Feb;22(1):23-36 - PubMed
  13. Respir Physiol Neurobiol. 2012 Jan 15;180(1):126-31 - PubMed
  14. J Appl Physiol (1985). 1996 Oct;81(4):1683-90 - PubMed
  15. Chest. 2003 Feb;123(2):366-71 - PubMed
  16. J Physiol. 2013 May 1;591(9):2245-57 - PubMed
  17. Respir Physiol Neurobiol. 2012 Apr 15;181(1):44-5 - PubMed
  18. J Am Coll Cardiol. 1996 Mar 1;27(3):650-7 - PubMed
  19. Circ Res. 2007 May 11;100(9):1371-8 - PubMed
  20. Am J Respir Crit Care Med. 2000 Dec;162(6):2194-200 - PubMed
  21. Physiology (Bethesda). 2019 Jul 1;34(4):264-282 - PubMed
  22. Circulation. 1996 Sep 15;94(6):1325-8 - PubMed
  23. Circulation. 2001 Jul 31;104(5):544-9 - PubMed
  24. Acta Physiol Scand. 1952 Feb 12;24(4):293-313 - PubMed
  25. J Physiol. 2017 Jan 1;595(1):53-61 - PubMed
  26. Respir Physiol. 1999 Jan 1;115(1):23-33 - PubMed
  27. Exp Physiol. 2014 Mar;99(3):552-61 - PubMed
  28. Hypertension. 2013 Jan;61(1):5-13 - PubMed
  29. J Physiol. 2007 Oct 1;584(Pt 1):285-93 - PubMed
  30. Am J Physiol Heart Circ Physiol. 2007 Jul;293(1):H846-52 - PubMed
  31. Eur Heart J. 2015 Aug 7;36(30):1974-82b - PubMed
  32. Circulation. 2002 Mar 19;105(11):1329-35 - PubMed
  33. Int J Cardiol. 2013 Oct 3;168(3):2506-9 - PubMed
  34. Hypertension. 2020 Jan;75(1):257-264 - PubMed
  35. J Physiol. 2003 Nov 15;553(Pt 1):3-11 - PubMed
  36. J Hypertens. 2007 Jan;25(1):157-61 - PubMed
  37. J Am Coll Cardiol. 2009 May 26;53(21):1975-80 - PubMed
  38. Circulation. 1999 Jul 20;100(3):262-7 - PubMed
  39. J Physiol. 2015 Sep 15;593(18):4225-43 - PubMed
  40. J Physiol. 2020 Nov;598(21):4803-4819 - PubMed
  41. Am J Physiol Regul Integr Comp Physiol. 2009 May;296(5):R1473-95 - PubMed
  42. J Am Coll Cardiol. 2009 Jul 28;54(5):375-85 - PubMed
  43. J Physiol. 1995 Jun 1;485 ( Pt 2):561-70 - PubMed
  44. Respir Physiol. 1973 Apr;17(3):302-14 - PubMed
  45. Hypertension. 2010 Apr;55(4):1012-7 - PubMed
  46. Am Rev Respir Dis. 1974 Mar;109(3):345-50 - PubMed
  47. J Clin Invest. 1991 Jun;87(6):1953-7 - PubMed
  48. Am J Respir Crit Care Med. 1996 Aug;154(2 Pt 1):376-81 - PubMed
  49. Respir Physiol Neurobiol. 2007 Jul 1;157(1):171-85 - PubMed
  50. Can J Physiol Pharmacol. 1996 Jun;74(6):640-6 - PubMed
  51. Circulation. 1999 Dec 14;100(24):2418-24 - PubMed
  52. Am Rev Respir Dis. 1977 Aug;116(2):336-9 - PubMed
  53. Eur J Heart Fail. 2017 Nov;19(11):1361-1378 - PubMed
  54. Eur Heart J. 1997 Mar;18(3):480-6 - PubMed
  55. J Appl Physiol (1985). 1963 May 01;18(3):580-584 - PubMed
  56. Circ Heart Fail. 2020 Jun;13(6):e006837 - PubMed
  57. Q J Exp Physiol Cogn Med Sci. 1958 Apr;43(2):214-27 - PubMed
  58. Circulation. 1997 Oct 21;96(8):2586-94 - PubMed
  59. J Am Coll Cardiol. 2013 Dec 24;62(25):2422-2430 - PubMed
  60. Curr Hypertens Rep. 2013 Aug;15(4):356-62 - PubMed
  61. J Physiol. 2013 Sep 15;591(18):4351-3 - PubMed
  62. J Appl Physiol (1985). 1993 Sep;75(3):1035-43 - PubMed
  63. J Physiol. 2019 Jul;597(13):3281-3296 - PubMed
  64. Clin Sci (Lond). 2008 Apr;114(7):489-97 - PubMed
  65. J Physiol. 2018 Aug;596(15):3029-3042 - PubMed
  66. Compr Physiol. 2014 Oct;4(4):1511-62 - PubMed
  67. Respir Physiol. 1992 Apr-May;88(1-2):87-100 - PubMed
  68. Eur J Heart Fail. 2017 Mar;19(3):391-400 - PubMed
  69. Australas Ann Med. 1967 Feb;16(1):20-32 - PubMed

Publication Types