Display options
Share it on

Nanomaterials (Basel). 2020 Dec 20;10(12). doi: 10.3390/nano10122563.

Plasmon-Enhanced Fluorescence of EGFP on Short-Range Ordered Ag Nanohole Arrays.

Nanomaterials (Basel, Switzerland)

Vladimir E Bochenkov, Ekaterina M Lobanova, Aleksander M Shakhov, Artyom A Astafiev, Alexey M Bogdanov, Vadim A Timoshenko, Anastasia V Bochenkova

Affiliations

  1. Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia.
  2. N.N. Semenov Federal Research Center for Chemical Physics of RAS, 119991 Moscow, Russia.
  3. Shemiakin-Ovchinnikov Institute of Bioorganic Chemistry of RAS, 117997 Moscow, Russia.

PMID: 33419362 PMCID: PMC7767041 DOI: 10.3390/nano10122563

Abstract

Fluorescence of organic molecules can be enhanced by plasmonic nanostructures through coupling to their locally amplified electromagnetic field, resulting in higher brightness and better photostability of fluorophores, which is particularly important for bioimaging applications involving fluorescent proteins as genetically encoded biomarkers. Here, we show that a hybrid bionanosystem comprised of a monolayer of Enhanced Green Fluorescent Protein (EGFP) covalently linked to optically thin Ag films with short-range ordered nanohole arrays can exhibit up to 6-fold increased brightness. The largest enhancement factor is observed for nanohole arrays with a propagating surface plasmon mode, tuned to overlap with both excitation and emission of EGFP. The fluorescence lifetime measurements in combination with FDTD simulations provide in-depth insight into the origin of the fluorescence enhancement, showing that the effect is due to the local amplification of the optical field near the edges of the nanoholes. Our results pave the way to improving the photophysical properties of hybrid bionanosystems based on fluorescent proteins at the interface with easily fabricated and tunable plasmonic nanostructures.

Keywords: Enhanced Green Fluorescent Protein; colloidal lithography; nanohole arrays; plasmon-enhanced fluorescence; surface plasmon resonance

References

  1. Opt Express. 2007 Oct 17;15(21):14266-74 - PubMed
  2. Biochem Biophys Res Commun. 2008 Nov 28;376(4):712-7 - PubMed
  3. Chem Rev. 2011 Jun 8;111(6):3828-57 - PubMed
  4. Nano Lett. 2017 May 10;17(5):3145-3151 - PubMed
  5. Analyst. 2008 Oct;133(10):1308-46 - PubMed
  6. Science. 2006 Apr 14;312(5771):217-24 - PubMed
  7. J Cell Sci. 2001 Mar;114(Pt 5):837-8 - PubMed
  8. Chem Soc Rev. 2008 May;37(5):898-911 - PubMed
  9. Biointerphases. 2008 Sep;3(3):FD30-40 - PubMed
  10. Chem Rev. 2017 Jun 14;117(11):7538-7582 - PubMed
  11. Analyst. 2016 Jun 21;141(12):3803-10 - PubMed
  12. J Am Chem Soc. 2005 Oct 26;127(42):14936-41 - PubMed
  13. Small. 2011 Jun 20;7(12):1653-63 - PubMed
  14. Trends Biotechnol. 2005 Dec;23(12):605-13 - PubMed
  15. Int J Mol Sci. 2012 Nov 13;13(11):14742-65 - PubMed
  16. Opt Express. 2013 Jun 17;21(12):14763-70 - PubMed
  17. J Phys Chem C Nanomater Interfaces. 2016 Jul 14;120(27):14820-14827 - PubMed
  18. Phys Rev Lett. 2006 Dec 31;97(26):266808 - PubMed
  19. Nano Lett. 2017 Nov 8;17(11):7033-7039 - PubMed

Publication Types

Grant support