Display options
Share it on

Pflugers Arch. 2021 Feb;473(2):241-252. doi: 10.1007/s00424-020-02499-7. Epub 2021 Jan 08.

Increasing whole-body energetic stress does not augment fasting-induced changes in human skeletal muscle.

Pflugers Archiv : European journal of physiology

Hashim Islam, Alessandra Amato, Jacob T Bonafiglia, Fasih A Rahman, Nicholas Preobrazenski, Andrew Ma, Craig A Simpson, Joe Quadrilatero, Brendon J Gurd

Affiliations

  1. School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada.
  2. Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada.
  3. School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada. [email protected].

PMID: 33420549 DOI: 10.1007/s00424-020-02499-7

Abstract

Fasting rapidly (≤ 6 h) activates mitochondrial biogenic pathways in rodent muscle, an effect that is absent in human muscle following prolonged (10-72 h) fasting. We tested the hypotheses that fasting-induced changes in human muscle occur shortly after food withdrawal and are modulated by whole-body energetic stress. Vastus lateralis biopsies were obtained from ten healthy males before, during (4 h), and after (8 h) two supervised fasts performed with (FAST+EX) or without (FAST) 2 h of arm ergometer exercise (~ 400 kcal of added energy expenditure). PGC-1α mRNA (primary outcome measure) was non-significantly reduced (p = 0.065 [η

Keywords: AMPK; Caloric restriction; Food deprivation; Metabolic flexibility; PGC-1α; SIRT1

References

  1. Aquilano K, Baldelli S, Pagliei B, Cannata SM, Rotilio G, Ciriolo MR (2013) p53 orchestrates the PGC-1α-mediated antioxidant response upon mild redox and metabolic imbalance. Antioxid Redox Signal 18:386–399. https://doi.org/10.1089/ars.2012.4615 - PubMed
  2. Bak AM, Møller AB, Vendelbo MH, Nielsen TS, Viggers R, Rungby J, Pedersen SB, Jørgensen JOL, Jessen N, Møller N (2016) Differential regulation of lipid and protein metabolism in obese vs. lean subjects before and after a 72-h fast. Am J Physiol-Endocrinol Metab 311:E224–E235. https://doi.org/10.1152/ajpendo.00464.2015 - PubMed
  3. Bak AM, Vendelbo MH, Christensen B, Viggers R, Bibby BM, Rungby J, Jørgensen JOL, Møller N, Jessen N (2018) Prolonged fasting-induced metabolic signatures in human skeletal muscle of lean and obese men. PLoS One 13:e0200817. https://doi.org/10.1371/journal.pone.0200817 - PubMed
  4. Bergstrom J (1975) Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Invest 35:609–616 - PubMed
  5. Birk JB, Wojtaszewski JFP (2006) Predominant α2/β2/γ3 AMPK activation during exercise in human skeletal muscle: differential AMPK trimer activation in muscle. J Physiol 577:1021–1032. https://doi.org/10.1113/jphysiol.2006.120972 - PubMed
  6. Bloemberg D, Quadrilatero J (2012) Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis. PLoS One 7:e35273. https://doi.org/10.1371/journal.pone.0035273 - PubMed
  7. Bloemberg D, Quadrilatero J (2019) Autophagy, apoptosis, and mitochondria: molecular integration and physiological relevance in skeletal muscle. Am J Phys Cell Phys 317:C111–C130. https://doi.org/10.1152/ajpcell.00261.2018 - PubMed
  8. Bujak AL, Crane JD, Lally JS, Ford RJ, Kang SJ, Rebalka IA, Green AE, Kemp BE, Hawke TJ, Schertzer JD, Steinberg GR (2015) AMPK activation of muscle autophagy prevents fasting-induced hypoglycemia and myopathy during aging. Cell Metab 21:883–890. https://doi.org/10.1016/j.cmet.2015.05.016 - PubMed
  9. Cantó C, Auwerx J (2009) PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr Opin Lipidol 20:98–105. https://doi.org/10.1097/MOL.0b013e328328d0a4 - PubMed
  10. Cantó C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J (2009) AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458:1056–1060. https://doi.org/10.1038/nature07813 - PubMed
  11. Cantó C, Jiang LQ, Deshmukh AS, Mataki C, Coste A, Lagouge M, Zierath JR, Auwerx J (2010) Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab 11:213–219. https://doi.org/10.1016/j.cmet.2010.02.006 - PubMed
  12. Caton PW, Holness MJ, Bishop-Bailey D, Sugden MC (2011) PPARα–LXR as a novel metabolostatic signalling axis in skeletal muscle that acts to optimize substrate selection in response to nutrient status. Biochem J 437:521–530. https://doi.org/10.1042/BJ20110702 - PubMed
  13. Cerda-Kohler H, Henríquez-Olguín C, Casas M, Jensen TE, Llanos P, Jaimovich E (2018) Lactate administration activates the ERK1/2, mTORC1, and AMPK pathways differentially according to skeletal muscle type in mouse. Phys Rep 6:e13800. https://doi.org/10.14814/phy2.13800 - PubMed
  14. Chen ZP, McConell GK, Michell BJ, Snow RJ, Canny BJ, Kemp BE (2000) AMPK signaling in contracting human skeletal muscle: acetyl-CoA carboxylase and NO synthase phosphorylation. Am J Physiol Endocrinol Metab 279:E1202–E1206. https://doi.org/10.1152/ajpendo.2000.279.5.E1202 - PubMed
  15. Chen Z-P, Stephens TJ, Murthy S, Canny BJ, Hargreaves M, Witters LA, Kemp BE, McConell GK (2003) Effect of exercise intensity on skeletal muscle AMPK signaling in humans. Diabetes 52:2205–2212. https://doi.org/10.2337/diabetes.52.9.2205 - PubMed
  16. Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Lawrence Erlbaum Associates, Hillsdale - PubMed
  17. Crilly MJ, Tryon LD, Erlich AT, Hood DA (2016) The role of Nrf2 in skeletal muscle contractile and mitochondrial function. J Appl Physiol 121:730–740. https://doi.org/10.1152/japplphysiol.00042.2016 - PubMed
  18. de Lange P, Farina P, Moreno M, Ragni M, Lombardi A, Silvestri E, Burrone L, Lanni A, Goglia F (2006) Sequential changes in the signal transduction responses of skeletal muscle following food deprivation. FASEB J 20:2579–2581. https://doi.org/10.1096/fj.06-6025fje - PubMed
  19. Dethlefsen MM, Bertholdt L, Gudiksen A, Stankiewicz T, Bangsbo J, van Hall G, Plomgaard P, Pilegaard H (2018) Training state and skeletal muscle autophagy in response to 36 h of fasting. J Appl Physiol 125:1609–1619. https://doi.org/10.1152/japplphysiol.01146.2017 - PubMed
  20. Edgett BA, Bonafiglia JT, Baechler BL, Quadrilatero J, Gurd BJ (2016) The effect of acute and chronic sprint-interval training on LRP130, SIRT3, and PGC-1 α expression in human skeletal muscle. Phys Rep 4:e12879. https://doi.org/10.14814/phy2.12879 - PubMed
  21. Edgett BA, Scribbans TD, Raleigh JP, Matusiak JBL, Boonstra K, Simpson CA, Perry CGR, Quadrilatero J, Gurd BJ (2016) The impact of a 48-h fast on SIRT1 and GCN5 in human skeletal muscle. Appl Physiol Nutr Metab Physiol Appl Nutr Metab 41:953–962. https://doi.org/10.1139/apnm-2016-0130 - PubMed
  22. Egan DF, Shackelford DB, Mihaylova MM, Gelino S, Kohnz RA, Mair W, Vasquez DS, Joshi A, Gwinn DM, Taylor R, Asara JM, Fitzpatrick J, Dillin A, Viollet B, Kundu M, Hansen M, Shaw RJ (2011) Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331:456–461. https://doi.org/10.1126/science.1196371 - PubMed
  23. Gibala MJ, McGee SL, Garnham AP, Howlett KF, Snow RJ, Hargreaves M (2009) Brief intense interval exercise activates AMPK and p38 MAPK signaling and increases the expression of PGC-1α in human skeletal muscle. J Appl Physiol 106:929–934. https://doi.org/10.1152/japplphysiol.90880.2008 - PubMed
  24. Gordon JW, Rungi AA, Inagaki H, Hood DA (2001) Selected contribution: effects of contractile activity on mitochondrial transcription factor A expression in skeletal muscle. J Appl Physiol 90:389–396. https://doi.org/10.1152/jappl.2001.90.1.389 - PubMed
  25. Gurd BJ (2011) Deacetylation of PGC-1α by SIRT1: importance for skeletal muscle function and exercise-induced mitochondrial biogenesis. Appl Physiol Nutr Metab Physiol Appl Nutr Metab 36:589–597. https://doi.org/10.1139/h11-070 - PubMed
  26. Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM (2003) An autoregulatory loop controls peroxisome proliferator-activated receptor coactivator 1 expression in muscle. Proc Natl Acad Sci 100:7111–7116. https://doi.org/10.1073/pnas.1232352100 - PubMed
  27. He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93. https://doi.org/10.1146/annurev-genet-102808-114910 - PubMed
  28. Hoeks J, van Herpen NA, Mensink M, Moonen-Kornips E, van Beurden D, Hesselink MKC, Schrauwen P (2010) Prolonged fasting identifies skeletal muscle mitochondrial dysfunction as consequence rather than cause of human insulin resistance. Diabetes 59:2117–2125. https://doi.org/10.2337/db10-0519 - PubMed
  29. Høgild ML, Gudiksen A, Pilegaard H, Stødkilde-Jørgensen H, Pedersen SB, Møller N, Jørgensen JOL, Jessen N (2019) Redundancy in regulation of lipid accumulation in skeletal muscle during prolonged fasting in obese men. Phys Rep 7:e14285. https://doi.org/10.14814/phy2.14285 - PubMed
  30. Islam H, Bonafiglia JT, Turnbull PC, Simpson CA, Perry CGR, Gurd BJ (2019) The impact of acute and chronic exercise on Nrf2 expression in relation to markers of mitochondrial biogenesis in human skeletal muscle. Eur J Appl Physiol 120:149–160. https://doi.org/10.1007/s00421-019-04259-7 - PubMed
  31. Islam H, Edgett BA, Bonafiglia JT, Shulman T, Ma A, Quadrilatero J, Simpson CA, Gurd BJ (2019) Repeatability of exercise-induced changes in mRNA expression and technical considerations for qPCR analysis in human skeletal muscle. Exp Physiol 104:407–420. https://doi.org/10.1113/EP087401 - PubMed
  32. Jäger S, Handschin C, St-Pierre J, Spiegelman BM (2007) AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci U S A 104:12017–12022. https://doi.org/10.1073/pnas.0705070104 - PubMed
  33. Jamart C, Naslain D, Gilson H, Francaux M (2013) Higher activation of autophagy in skeletal muscle of mice during endurance exercise in the fasted state. Am J Physiol-Endocrinol Metab 305:E964–E974. https://doi.org/10.1152/ajpendo.00270.2013 - PubMed
  34. Kulkarni SR, Donepudi AC, Xu J, Wei W, Cheng QC, Driscoll MV, Johnson DA, Johnson JA, Li X, Slitt AL (2014) Fasting induces nuclear factor E2-related factor 2 and ATP-binding cassette transporters via protein kinase A and sirtuin-1 in mouse and human. Antioxid Redox Signal 20:15–30. https://doi.org/10.1089/ars.2012.5082 - PubMed
  35. Laker RC, Drake JC, Wilson RJ, Lira VA, Lewellen BM, Ryall KA, Fisher CC, Zhang M, Saucerman JJ, Goodyear LJ, Kundu M, Yan Z (2017) Ampk phosphorylation of Ulk1 is required for targeting of mitochondria to lysosomes in exercise-induced mitophagy. Nat Commun 8:548. https://doi.org/10.1038/s41467-017-00520-9 - PubMed
  36. Lange P, Moreno M, Silvestri E, Lombardi A, Goglia F, Lanni A (2007) Fuel economy in food-deprived skeletal muscle: signaling pathways and regulatory mechanisms. FASEB J 21:3431–3441. https://doi.org/10.1096/fj.07-8527rev - PubMed
  37. Little JP, Safdar A, Cermak N, Tarnopolsky MA, Gibala MJ (2010) Acute endurance exercise increases the nuclear abundance of PGC-1α in trained human skeletal muscle. Am J Physiol-Regul Integr Comp Physiol 298:R912–R917. https://doi.org/10.1152/ajpregu.00409.2009 - PubMed
  38. Lu B, Lee J, Nie X, Li M, Morozov YI, Venkatesh S, Bogenhagen DF, Temiakov D, Suzuki CK (2013) Phosphorylation of human TFAM in mitochondria impairs DNA binding and promotes degradation by the AAA+ Lon protease. Mol Cell 49:121–132. https://doi.org/10.1016/j.molcel.2012.10.023 - PubMed
  39. Merry TL, Ristow M (2016) Nuclear factor erythroid-derived 2-like 2 (NFE2L2, Nrf2) mediates exercise-induced mitochondrial biogenesis and the anti-oxidant response in mice: NFE2L2 and mitochondrial biogenesis. J Physiol 594:5195–5207. https://doi.org/10.1113/JP271957 - PubMed
  40. Miura S, Kawanaka K, Kai Y, Tamura M, Goto M, Shiuchi T, Minokoshi Y, Ezaki O (2007) An increase in murine skeletal muscle peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) mRNA in response to exercise is mediated by β-adrenergic receptor activation. Endocrinology 148:3441–3448. https://doi.org/10.1210/en.2006-1646 - PubMed
  41. Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y (2004) In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 15:1101–1111. https://doi.org/10.1091/mbc.e03-09-0704 - PubMed
  42. Park SH, Gammon SR, Knippers JD, Paulsen SR, Rubink DS, Winder WW (2002) Phosphorylation-activity relationships of AMPK and acetyl-CoA carboxylase in muscle. J Appl Physiol 92:2475–2482. https://doi.org/10.1152/japplphysiol.00071.2002 - PubMed
  43. Piantadosi CA, Carraway MS, Babiker A, Suliman HB (2008) Heme oxygenase-1 regulates cardiac mitochondrial biogenesis via Nrf2-mediated transcriptional control of nuclear respiratory Factor-1. Circ Res 103:1232–1240. https://doi.org/10.1161/01.RES.0000338597.71702.ad - PubMed
  44. Pilegaard H, Saltin B, Neufer PD (2003) Effect of short-term fasting and refeeding on transcriptional regulation of metabolic genes in human skeletal muscle. Diabetes 52:657–662. https://doi.org/10.2337/diabetes.52.3.657 - PubMed
  45. Preobrazenski N, Islam H, Drouin PJ, Bonafiglia JT, Tschakovsky ME, Gurd BJ (2019) A novel gravity-induced blood flow restriction model augments ACC phosphorylation and PGC-1α mRNA in human skeletal muscle following aerobic exercise: a randomized crossover study. Appl Physiol Nutr Metab Physiol Appl Nutr Metab 45:641–649. https://doi.org/10.1139/apnm-2019-0641 - PubMed
  46. Scarpulla RC (2011) Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim Biophys Acta BBA - Mol Cell Res 1813:1269–1278. https://doi.org/10.1016/j.bbamcr.2010.09.019 - PubMed
  47. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3:1101–1108 - PubMed
  48. Schwalm C, Jamart C, Benoit N, Naslain D, Prémont C, Prévet J, Van Thienen R, Deldicque L, Francaux M (2015) Activation of autophagy in human skeletal muscle is dependent on exercise intensity and AMPK activation. FASEB J 29:3515–3526. https://doi.org/10.1096/fj.14-267187 - PubMed
  49. Scribbans TD, Edgett BA, Vorobej K, Mitchell AS, Joanisse SD, Matusiak JBL, Parise G, Quadrilatero J, Gurd BJ (2014) Fibre-specific responses to endurance and low volume high intensity interval training: striking similarities in acute and chronic adaptation. PLoS One 9:e98119. https://doi.org/10.1371/journal.pone.0098119 - PubMed
  50. Stannard SR, Thompson MW, Fairbairn K, Huard B, Sachinwalla T, Thompson CH (2002) Fasting for 72 h increases intramyocellular lipid content in nondiabetic, physically fit men. Am J Physiol-Endocrinol Metab 283:E1185–E1191. https://doi.org/10.1152/ajpendo.00108.2002 - PubMed
  51. Stephens TJ, Chen Z-P, Canny BJ, Michell BJ, Kemp BE, McConell GK (2002) Progressive increase in human skeletal muscle AMPKα2 activity and ACC phosphorylation during exercise. Am J Physiol-Endocrinol Metab 282:E688–E694. https://doi.org/10.1152/ajpendo.00101.2001 - PubMed
  52. Tsintzas K, Jewell K, Kamran M, Laithwaite D, Boonsong T, Littlewood J, Macdonald I, Bennett A (2006) Differential regulation of metabolic genes in skeletal muscle during starvation and refeeding in humans: metabolic genes and starvation in humans. J Physiol 575:291–303. https://doi.org/10.1113/jphysiol.2006.109892 - PubMed
  53. Tunstall RJ, Mehan KA, Hargreaves M, Spriet LL, Cameron-Smith D (2002) Fasting activates the gene expression of UCP3 independent of genes necessary for lipid transport and oxidation in skeletal muscleq. Biochem Biophys Res Commun 294(2):301–8. https://doi.org/10.1016/S0006-291X(02)00473-4 - PubMed
  54. Vaziri H, Dessain SK, Eaton EN, Imai S-I, Frye RA, Pandita TK, Guarente L, Weinberg RA (2001) hSIR2SIRT1 functions as an NAD-dependent p53 deacetylase. Cell 107:149–159. https://doi.org/10.1016/S0092-8674(01)00527-X - PubMed
  55. Vendelbo MH, Clasen BFF, Treebak JT, Møller L, Krusenstjerna-Hafstrøm T, Madsen M, Nielsen TS, Stødkilde-Jørgensen H, Pedersen SB, Jørgensen JOL, Goodyear LJ, Wojtaszewski JFP, Møller N, Jessen N (2012) Insulin resistance after a 72-h fast is associated with impaired AS160 phosphorylation and accumulation of lipid and glycogen in human skeletal muscle. Am J Physiol-Endocrinol Metab 302:E190–E200. https://doi.org/10.1152/ajpendo.00207.2011 - PubMed
  56. Wijngaarden MA, van der Zon GC, van Dijk KW, Pijl H, Guigas B (2013) Effects of prolonged fasting on AMPK signaling, gene expression, and mitochondrial respiratory chain content in skeletal muscle from lean and obese individuals. Am J Physiol-Endocrinol Metab 304:E1012–E1021. https://doi.org/10.1152/ajpendo.00008.2013 - PubMed
  57. Wijngaarden MA, Bakker LEH, van der Zon GC, ’t Hoen PAC, van Dijk KW, Jazet IM, Pijl H, Guigas B (2014) Regulation of skeletal muscle energy/nutrient-sensing pathways during metabolic adaptation to fasting in healthy humans. Am J Physiol-Endocrinol Metab 307:E885–E895. https://doi.org/10.1152/ajpendo.00215.2014 - PubMed

Publication Types