Display options
Share it on

Angew Chem Int Ed Engl. 2020 Oct 19;59(43):18943-18947. doi: 10.1002/anie.202006468. Epub 2020 Aug 20.

From Glucose to Polymers: A Continuous Chemoenzymatic Process.

Angewandte Chemie (International ed. in English)

Sampa Maiti, Saikat Manna, Nicholas Banahene, Lucynda Pham, Zhijie Liang, Jun Wang, Yi Xu, Reuben Bettinger, John Zientko, Aaron P Esser-Kahn, Wenjun Du

Affiliations

  1. Department of Chemistry and Biochemistry, Science of Advanced Materials, Central Michigan University, Mount Pleasant, MI, 48859, USA.
  2. Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA.
  3. Current address: Department of Wound Repair Surgery, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, 530000, China.

PMID: 33448568 DOI: 10.1002/anie.202006468

Abstract

Efforts to synthesize degradable polymers from renewable resources are deterred by technical and economic challenges; especially, the conversion of natural building blocks into polymerizable monomers is inefficient, requiring multistep synthesis and chromatographic purification. Herein we report a chemoenzymatic process to address these challenges. An enzymatic reaction system was designed that allows for regioselective functional group transformation, efficiently converting glucose into a polymerizable monomer in quantitative yield, thus removing the need for chromatographic purification. With this key success, we further designed a continuous, three-step process, which enabled the synthesis of a sugar polymer, sugar poly(orthoester), directly from glucose in high yield (73 % from glucose). This work may provide a proof-of-concept in developing technically and economically viable approaches to address the many issues associated with current petroleum-based polymers.

© 2020 Wiley‐VCH GmbH.

Keywords: chemoenzymatic processes; glucose; poly(orthoester); polymer synthesis; sustainable chemistry

References

  1. Y. Zhu, C. Romain, C. K. Williams, Nature 2016, 540, 354–362. - PubMed
  2. R. Geyer, J. R. Jambeck, K. L. Law, Sci. Adv. 2017, 3, e1700782. - PubMed
  3. A. Celli, A. Gandini, C. Gioia, T. M. Lacerda, M. Vannini, M. Colonna in Chemicals and Fuels from Bio-Based Building Blocks, 1st ed., Wiley-VCH, Weinheim, 2016, pp. 275–314. - PubMed
  4. Ellen MacArthur Foundation Report—The New Plastics Economy, 2016, https://www.ellenmacarthurfoundation.org/assets/downloads/New-Plastics-Economy_Catalysing-Action_13-11-17.pdf. - PubMed
  5. S. L. Kristufek, K. T. Wacker, Y.-Y. T. Tsao, L. Su, K. L. Wooley, Nat. Prod. Rep. 2017, 34, 433–459. - PubMed
  6. A. L. Holmberg, K. H. Reno, R. P. Wool, I. I. I. T. H. Epps, Soft Matter 2014, 10, 7405–7424. - PubMed
  7. J. P. Jain, M. Sokolsky, N. Kumar, A. J. Domb, Polym. Rev. 2008, 48, 156–191. - PubMed
  8. L. Maisonneuve, T. Lebarbé, E. Grau, H. Cramail, Polym. Chem. 2013, 4, 5472–5517. - PubMed
  9. J. A. Galbis, M. de Garcua García-Martín, M. V. de Paz, E. Galbis, Chem. Rev. 2016, 116, 1600–1636. - PubMed
  10. R. Xiao, M. W. Grinstaff, Prog. Polym. Sci. 2017, 74, 78–116. - PubMed
  11. https://www.alibaba.com/showroom/glucose-price-per-ton.html. - PubMed
  12. G. Liu, J. Zhang, J. Bao, Bioprocess Biosyst. Eng. 2016, 39, 133–140. - PubMed
  13. B. Yang, Z. Dai, S.-Y. Ding, C. E. Wyman, Biofuels 2011, 2, 421–449. - PubMed
  14. A. S. Balijepalli, R. C. Sabatelle, M. Chen, B. Suki, M. W. Grinstaff, Angew. Chem. Int. Ed. 2020, 59, 704–710; - PubMed
  15. Angew. Chem. 2020, 132, 714–720. - PubMed
  16. E. L. Dane, M. W. Grinstaff, J. Am. Chem. Soc. 2012, 134, 16255–16264. - PubMed
  17. K. Mikami, A. T. Lonnecker, T. P. Gustafson, N. F. Zinnel, P.-J. Pai, D. H. Russell, K. L. Wooley, J. Am. Chem. Soc. 2013, 135, 6826–6829. - PubMed
  18. Y. Song, X. Ji, M. Dong, R. Li, Y.-N. Lin, H. Wang, K. L. Wooley, J. Am. Chem. Soc. 2018, 140, 16053–16057. - PubMed
  19. A. T. Lonnecker, Y. H. Lim, S. E. Felder, C. J. Besset, K. L. Wooley, Macromolecules 2016, 49, 7857–7867. - PubMed
  20. L. Li, Y. Xu, I. Milligan, L. Fu, E. A. Franckowiak, W. Du, Angew. Chem. Int. Ed. 2013, 52, 13699–13702; - PubMed
  21. Angew. Chem. 2013, 125, 13944–13947. - PubMed
  22. L. Li, E. A. Franckowiak, Y. Xu, E. McClain, W. Du, J. Polym. Sci. Part A 2013, 51, 3693–3699. - PubMed
  23. S. Maiti, S. Manna, J. Shen, A. P. Esser-Kahn, W. Du, J. Am. Chem. Soc. 2019, 141, 4510–4514. - PubMed
  24. L. Li, K. Knickelbein, L. Zhang, J. Wang, M. Obrinske, G. Z. Ma, L.-M. Zhang, L. Bitterman, W. Du, Chem. Commun. 2015, 51, 13078–13081. - PubMed
  25. L. Li, J. Wang, M. Obrinske, I. Milligan, K. O'Hara, L. Bitterman, W. Du, Chem. Commun. 2015, 51, 6972–6975. - PubMed
  26. C.-W. Chang, S.-S. Chang, C.-S. Chao, K.-K. T. Mong, Tetrahedron Lett. 2009, 50, 4536–4540. - PubMed
  27. J.-L. Montero, J.-Y. Winum, A. Leydet, M. Kamal, A. A. Pavia, J.-P. Roque, Carbohydr. Res. 1997, 297, 175–180. - PubMed
  28. H. M. Sweers, C. H. Wong, J. Am. Chem. Soc. 1986, 108, 6421–6422. - PubMed
  29. W. J. Hennen, H. M. Sweers, Y. F. Wang, C. H. Wong, J. Org. Chem. 1988, 53, 4939–4945. - PubMed
  30. M. Filice, J. M. Guisan, M. Terreni, J. M. Palomo, Nat. Protoc. 2012, 7, 1783–1796. - PubMed
  31. I. Bhushan, R. Parshad, G. N. Qazi, V. K. Gupta, J. Bioact. Compat. Polym. 2008, 23, 552–562. - PubMed
  32. S. K. Bajpai, S. Sharma, React. Funct. Polym. 2004, 59, 129–140. - PubMed
  33. P. Sikorski, F. Mo, G. Skjåk-Bræk, B. T. Stokke, Biomacromolecules 2007, 8, 2098–2103. - PubMed
  34. P. Gurikov, I. Smirnova, Gels 2018, 4, 14. - PubMed
  35. G. Fernandez-Lorente, J. M. Palomo, J. Cocca, C. Mateo, P. Moro, M. Terreni, R. Fernandez-Lafuente, J. M. Guisan, Tetrahedron 2003, 59, 5705–5711. - PubMed
  36. M. Terreni, R. Salvetti, L. Linati, R. Fernandez-Lafuente, G. Fernández-Lorente, A. Bastida, J. M. Guisan, Carbohydr. Res. 2002, 337, 1615–1621. - PubMed
  37. Note: A spinning airstream was introduced into the vessel, making a vortex of the solvent (to produce large surface area thereby facilitating the evaporation). Meanwhile, a house vacuum was connected to the reaction vessel and the solvent was collected in a cold trap. - PubMed
  38. Y. Yu, S. Gim, D. Kim, Z. A. Arnon, E. Gazit, P. H. Seeberger, M. Delbianco, J. Am. Chem. Soc. 2019, 141, 4833–4838. - PubMed
  39. G. Odian, Principles of Polymerization. Introduction, 4th ed., Wiley, Hoboken, 2004. - PubMed

Publication Types