Display options
Share it on

Elife. 2021 Jan 15;10. doi: 10.7554/eLife.62270.

The orchestrated cellular and molecular responses of the kidney to endotoxin define a precise sepsis timeline.

eLife

Danielle Janosevic, Jered Myslinski, Thomas W McCarthy, Amy Zollman, Farooq Syed, Xiaoling Xuei, Hongyu Gao, Yun-Long Liu, Kimberly S Collins, Ying-Hua Cheng, Seth Winfree, Tarek M El-Achkar, Bernhard Maier, Ricardo Melo Ferreira, Michael T Eadon, Takashi Hato, Pierre C Dagher

Affiliations

  1. Department of Medicine, Indiana University School of Medicine, Indianapolis, United States.
  2. Department of Pediatrics and the Herman B. Wells Center, Indiana University School of Medicine, Indianapolis, United States.
  3. Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, United States.
  4. Roudebush Indianapolis Veterans Affairs Medical Center, Indianapolis, United States.

PMID: 33448928 PMCID: PMC7810465 DOI: 10.7554/eLife.62270

Abstract

Sepsis is a dynamic state that progresses at variable rates and has life-threatening consequences. Staging patients along the sepsis timeline requires a thorough knowledge of the evolution of cellular and molecular events at the tissue level. Here, we investigated the kidney, an organ central to the pathophysiology of sepsis. Single-cell RNA-sequencing in a murine endotoxemia model revealed the involvement of various cell populations to be temporally organized and highly orchestrated. Endothelial and stromal cells were the first responders. At later time points, epithelial cells upregulated immune-related pathways while concomitantly downregulating physiological functions such as solute homeostasis. Sixteen hours after endotoxin, there was global cell-cell communication failure and organ shutdown. Despite this apparent organ paralysis, upstream regulatory analysis showed significant activity in pathways involved in healing and recovery. This rigorous spatial and temporal definition of murine endotoxemia will uncover precise biomarkers and targets that can help stage and treat human sepsis.

© 2021, Janosevic et al.

Keywords: acute kidney injury; human; immunology; inflammation; medicine; mouse; sepsis; single-cell RNA-seq

Conflict of interest statement

DJ, JM, TM, AZ, FS, XX, HG, YL, KC, YC, SW, TE, BM, RM, ME, TH, PD No competing interests declared

References

  1. Methods Mol Biol. 2019;1979:425-432 - PubMed
  2. Nat Immunol. 2019 Feb;20(2):163-172 - PubMed
  3. Nat Biotechnol. 2019 Apr;37(4):451-460 - PubMed
  4. J Am Soc Nephrol. 2011 Aug;22(8):1505-16 - PubMed
  5. Genome Biol. 2020 Jun 2;21(1):130 - PubMed
  6. Science. 2018 May 18;360(6390):758-763 - PubMed
  7. Nat Biotechnol. 2018 Jun;36(5):411-420 - PubMed
  8. Annu Rev Physiol. 2017 Feb 10;79:449-469 - PubMed
  9. Nat Methods. 2017 Sep 29;14(10):935-936 - PubMed
  10. Nat Commun. 2019 Jun 27;10(1):2832 - PubMed
  11. Science. 2016 Jul 1;353(6294):78-82 - PubMed
  12. Nature. 2018 Aug;560(7719):494-498 - PubMed
  13. Front Immunol. 2015 Sep 01;6:435 - PubMed
  14. Nature. 2019 May;569(7756):361-367 - PubMed
  15. J Am Soc Nephrol. 2015 Nov;26(11):2603-5 - PubMed
  16. Nature. 2018 Nov;563(7731):347-353 - PubMed
  17. BMJ. 2019 Jan 9;364:k4891 - PubMed
  18. J Clin Invest. 2011 Oct;121(10):4003-14 - PubMed
  19. J Am Soc Nephrol. 2004 Mar;15(3):613-21 - PubMed
  20. J Clin Invest. 2018 Apr 2;128(4):1471-1484 - PubMed
  21. Elife. 2021 Jan 15;10: - PubMed
  22. Kidney Int. 2019 Apr;95(4):787-796 - PubMed
  23. Blood. 2012 Jul 5;120(1):90-9 - PubMed
  24. Am J Kidney Dis. 2018 Dec;72(6):846-856 - PubMed
  25. Nat Immunol. 2019 Aug;20(8):1035-1045 - PubMed
  26. Nat Methods. 2017 Nov;14(11):1083-1086 - PubMed
  27. Immunity. 2014 Apr 17;40(4):463-75 - PubMed
  28. Bioinformatics. 2014 Oct;30(19):2811-2 - PubMed
  29. Nucleic Acids Res. 2009 Jan;37(1):1-13 - PubMed
  30. Bioinformatics. 2013 Jan 1;29(1):15-21 - PubMed
  31. Science. 2018 Sep 28;361(6409):1380-1385 - PubMed
  32. Nat Biotechnol. 2014 Apr;32(4):381-386 - PubMed
  33. J Clin Invest. 2019 Jan 2;129(1):296-309 - PubMed
  34. Nature. 2019 Feb;566(7745):496-502 - PubMed
  35. Cell. 2019 Jun 13;177(7):1888-1902.e21 - PubMed
  36. Nat Med. 2010 May;16(5):535-43, 1p following 143 - PubMed
  37. J Am Soc Nephrol. 2015 Jun;26(6):1347-62 - PubMed
  38. J Am Soc Nephrol. 2019 Jan;30(1):23-32 - PubMed
  39. Dev Cell. 2019 Nov 4;51(3):399-413.e7 - PubMed
  40. J Am Soc Nephrol. 2011 Feb;22(2):317-26 - PubMed
  41. J Am Soc Nephrol. 2018 Aug;29(8):2069-2080 - PubMed
  42. Kidney Int. 2007 May;71(10):1001-8 - PubMed
  43. Nat Protoc. 2020 Apr;15(4):1484-1506 - PubMed
  44. Am J Respir Crit Care Med. 2016 Aug 15;194(4):402-14 - PubMed
  45. J Am Soc Nephrol. 2018 Jan;29(1):104-117 - PubMed
  46. J Am Soc Nephrol. 2015 Nov;26(11):2669-77 - PubMed

Publication Types

Grant support