Display options
Share it on

Biotechnol Bioeng. 2021 Apr;118(4):1693-1706. doi: 10.1002/bit.27686. Epub 2021 Feb 02.

Nonviral gene delivery to T cells with Lipofectamine LTX.

Biotechnology and bioengineering

Emily Harris, Devon Zimmerman, Eric Warga, Anil Bamezai, Jacob Elmer

Affiliations

  1. Department of Chemical and Biological Engineering, Villanova University, Villanova, Pennsylvania, USA.
  2. Department of Biology, Villanova University, Villanova, Pennsylvania, USA.

PMID: 33480049 DOI: 10.1002/bit.27686

Abstract

Retroviral gene delivery is widely used in T cell therapies for hematological cancers. However, viral vectors are expensive to manufacture, integrate genes in semirandom patterns, and their transduction efficiency varies between patients. In this study, several nonviral gene delivery vehicles, promoters, and additional variables were compared to optimize nonviral transgene delivery and expression in both Jurkat and primary T cells. Transfection of Jurkat cells was maximized to a high efficiency (63.0% ± 10.9% EGFP

© 2021 Wiley Periodicals LLC.

Keywords: Lipofectamine; T cell; lymphocyte; nonviral gene delivery; plasmid DNA

References

  1. Audouy, S., Molema, G., de Leij, L., & Hoekstra, D. (2000). Serum as a modulator of lipoplex-mediated gene transfection: Dependence of amphiphile, cell type and complex stability. Journal of Gene Medicine, 2, 465-476. https://doi.org/10.1002/1521-2254(200011/12)2:6%3C465::AID-JGM141%3E3.0.CO;2-Z - PubMed
  2. Ayoubi, T. A., & Van De Ven, W. J. (1996). Regulation of gene expression by alternative promoters. FASEB Journal, 10, 453-460. - PubMed
  3. Bai, H., Lester, G. M. S., Petishnok, L. C., & Dean, D. A. (2017). Cytoplasmic transport and nuclear import of plasmid DNA. Bioscience Reports, 37, BSR20160616. https://doi.org/10.1042/BSR20160616 - PubMed
  4. Berg, R. K., Rahbek, S. H., Kofod-Olsen, E., Holm, C. K., Melchjorsen, J., Jensen, D. G., Hansen, A. L., Jorgensen, L. B., Ostergaard, L., Tolstrup, M., Larsen, C. S., Paludan, S. R., Jakobsen, M. R., & Mogensen, T. H. (2014). T cells detect intracellular DNA but fail to induce Type 1 IFN responses: Implications for restriction of HIV replication. PLOS One, 9, e84513. https://doi.org/10.1371/journal.pone.0084513 - PubMed
  5. Bobardt, M. D., Armand-Ugón, M., Clotet, I., Zhang, Z., David, G., Este, J. A., & Gallay, P. A. (2004). Effect of polyanion-resistance on HIV-1 infection. Virology, 325, 389-398. https://doi.org/10.1016/j.virol.2004.05.011 - PubMed
  6. Chen, Z.-Y., He, C.-Y., Ehrhardt, A., & Kay, M. A. (2003). Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Molecular Therapy, 8, 495-500. https://doi.org/10.1016/S1525-0016(03)00168-0 - PubMed
  7. Chen, Z.-Y., Riu, E., He, C.-Y., Xu, H., & Kay, M. (2008). Silencing of episomal transgene expression in liver by plasmid bacterial backbone DNA is independent of CpG methylation. Molecular Therapy, 16, 548-556. https://doi.org/10.1038/sj.mt.6300399 - PubMed
  8. Chicaybam, L., Sodre, A. L., Curzio, B. A., & Bonamino, M. H. (2013). An efficient low cost method for gene transfer to T lymphocytes. PLOS One, 8, e60298. https://doi.org/10.1371/journal.pone.0060298 - PubMed
  9. Christensen, M. D., Elmer, J. J., Eaton, S., Gonzalez-Malerva, L., LaBaer, J., & Rege, K. (2015). Kinome-level screening identifies inhibition of polo-like kinase-1 (PLK1) as a target for enhancing non-viral transgene expression. Journal of Controlled Release, 204, 20-29. https://doi.org/10.1016/j.jconrel.2015.01.036 - PubMed
  10. Christianson, H. C., & Belting, M. (2014). Heparan sulfate proteoglycan as a cell-surface endocytosis receptor. Matrix Biology, 35, 51-55. https://doi.org/10.1016/j.matbio.2013.10.004 - PubMed
  11. Chung, S., Andersson, T., Sonntag, K.-C., Björklund, L., Isacson, O., & Kim, K.-S. (2002). Analysis of different promoter systems for efficient transgene expression in mouse embryonic stem cell lines. Stem Cells, 20, 139-145. https://doi.org/10.1634/stemcells.20-2-139 - PubMed
  12. Conese, M., Biffi, A., Dina, G., Marziliano, N., & Villa, A. (2009). Comparison between cationic polymer and lipid in plasmidic DNA delivery to the cell nucleus. The Open Gene Therapy Journal, 2, 21-28. - PubMed
  13. Doitsh, G., Galloway, N. L. K., Geng, X., Yang, Z., Monroe, K. M., Zepeda, O., Hunt, P. W., Hatano, H., Sowinski, S., Muñoz-Arias, I., & Greene, W. C. (2014). Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature, 505, 509-514. https://doi.org/10.1038/nature12940 - PubMed
  14. Finer, M., Dull, T., Qin, L., Farson, D., & Roberts, M. (1994). kat: A high-efficiency retroviral transduction system for primary human T lymphocytes. Blood, 83, 43-50. - PubMed
  15. Gill, S., & June, C. H. (2015). Going viral: Chimeric antigen receptor T-cell therapy for hematological malignancies. Immunological Reviews, 263, 68-89. https://doi.org/10.1111/imr.12243 - PubMed
  16. Goffinet, C., & Keppler, O. T. (2006). Efficient nonviral gene delivery into primary lymphocytes from rats and mice. FASEB Journal, 20, 500-502. https://doi.org/10.1096/fj.05-4651fje - PubMed
  17. Ingelsson, B., Soderberg, D., Strid, T., Soderberg, A., Bergh, A. C., Loitto, V., Lotfi, K., Segelmark, M., Spyrou, G., & Rosen, A. (2018). Lymphocytes eject interferogenic mitochondrial DNA webs in response to CpG and non-CpG oligodeoxynucleotides of class C. Proceedings of the National Academy of Sciences of the United States of America, 115, E478-E487. - PubMed
  18. Johnson, K. E., Bottero, V., Flaherty, S., Dutta, S., Singh, V. V., & Chandran, B. (2018). IFI16 restricts HSV-1 replication by accumulating on the HSV-1 genome, repressing HSV-1 gene expression, and directly or indirectly modulating histone modifications. PLOS Pathogens, 14, e1007113. - PubMed
  19. Jordan, E. T., Collins, M., Terefe, J., Ugozzoli, L., & Rubio, T. (2008). Optimizing electroporation conditions in primary and other difficult-to-transfect cells. Journal of Biomolecular Techniques, 19, 328-334. - PubMed
  20. Joshee, N., Bastola, D. R., & Cheng, P.-W. (2002). Transferrin-facilitated lipofection gene delivery strategy: characterization of the transfection complexes and intracellular trafficking. Human Gene Therapy. 13, 1991-2004. https://doi.org/10.1089/10430340260355392 - PubMed
  21. Kalos, M., & June, C. H. (2013). Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology. Immunity, 39, 49-60. https://doi.org/10.1016/J.IMMUNI.2013.07.002 - PubMed
  22. Kandil, R., Xie, Y., Heermann, R., Isert, L., Jung, K., Mehta, A., & Merkel, O. M. (2019). Coming in and finding out: Blenging receptor-targeted efficient endosomal escape in a novel bio-responsive system for gene knockdown in pulmonary T cells. Advances in Therapy, 2, 1900047. - PubMed
  23. Lacy-Hulbert, A., Thomas, R., Li, X.-P., Lilley, C. E., Coffin, R. S., & Roes, J. (2001). Interruption of coding sequences by heterologous introns can enhance the functional expression of recombinant genes. Gene Therapy, 8, 649-653. https://doi.org/10.1038/sj.gt.3301440 - PubMed
  24. Lee, K. D., Nir, S., & Papahadjopoulos, D. (1993). Quantitative analysis of liposome-cell interactions in vitro: rate constants of binding and endocytosis with suspension and adherent J774 cells and human monocytes. Biochemistry, 32, 889-899. - PubMed
  25. Letoha, T., Keller-Pintér, A., Kusz, E., Kolozsi, C., Bozsó, Z., Tóth, G., Vizler, C., Oláh, Z., & Szilák, L. (2010). Cell-penetrating peptide exploited syndecans. Biochim ica Biophysica Acta-Biomembranes, 1798, 2258-2265. https://doi.org/10.1016/j.bbamem.2010.01.022 - PubMed
  26. Levine, B. L., Miskin, J., Wonnacott, K., & Keir, C. (2017). Global manufacturing of CAR T cell therapy. Molecular Therapy. Methods & Clinical Development, 4, 92-101. https://doi.org/10.1016/j.omtm.2016.12.006 - PubMed
  27. Liu, L., Johnson, C., Fujimura, S., Teque, F., & Levy, J. A. (2011). Transfection optimization for primary human CD8+ cells. Journal of Immunological Methods, 372, 22-29. https://doi.org/10.1016/J.JIM.2011.06.026 - PubMed
  28. Maude, S. L., Frey, N., Shaw, P. A., Aplenc, R., Barrett, D. M., Bunin, N. J., Chew, A., Gonzalez, V. E., Zheng, Z., Lacey, S. F., Mahnke, Y. D., Melenhorst, J. J., Rheingold, S. R., Shen, A., Teachey, D. T., Levine, B. L., June, C. H., Porter, D. L., & Grupp, S. A. (2014). Chimeric antigen receptor T cells for sustained remissions in leukemia. New England Journal of Medicine, 371, 1507-1517. https://doi.org/10.1056/NEJMoa1407222 - PubMed
  29. Maude, S. L., Teachey, D. T., Rheingold, S. R., Shaw, P. A., Aplenc, R., Barrett, D. M., Barker, C. S., Callahan, C., Frey, N. V., Nazimuddin, F., Lacey, S. F., Zheng, Z., Levine, B., Melenhorst, J. J., Motley, L., Porter, D. L., June, C. H., & Grupp, S. A. (2016). Sustained remissions with CD19-specific chimeric antigen receptor (CAR)-modified T cells in children with relapsed/refractory ALL. Journal of Clinical Oncology, 34, 3011. https://doi.org/10.1200/jco.2016.34.15_suppl.3011 - PubMed
  30. Mašek, T., Vopalenský, V., & Pospíšek, M. (2013). The Luc2 gene enhances reliability of bicistronic assays. Open Life Sciences, 8, 423-431. https://doi.org/10.2478/s11535-013-0151-z - PubMed
  31. Mitchell, D. A., Karikari, I., Cui, X., Xie, W., Schmittling, R., & Sampson, J. H. (2008). Selective modification of antigen-specific T cells by RNA electroporation. Human Gene Therapy, 19, 511-521. https://doi.org/10.1089/hum.2007.115 - PubMed
  32. Mitchell, R. S., Beitzel, B. F., Schroder, A. R. W., Shinn, P., Chen, H., Berry, C. C., Ecker, J. R., & Bushman, F. D. (2004). Retroviral DNA integration: ASLV, HIV, and MLV show distinct target site preferences. PLOS Biology, 2, e234. https://doi.org/10.1371/journal.pbio.0020234 - PubMed
  33. Moffett, H. F., Coon, M. E., Radtke, S., Stephan, S. B., McKnight, L., Lambert, A., Stoddard, B. L., Kiem, H. P., & Stephan, M. T. (2017). Hit-and-run programming of therapeutic cytoreagents using mRNA nanocarriers. Nature Communications, 8, 1-13. - PubMed
  34. Muñoz-Arias, I., Doitsh, G., Yang, Z., Sowinski, S., Ruelas, D., & Greene, W. C. (2015). Blood-derived CD4 T cells naturally resist pyroptosis during abortive HIV-1 infection. Cell Host & Microbe, 18, 463-470. https://doi.org/10.1016/j.chom.2015.09.010 - PubMed
  35. Nakazawa, Y., Huye, L. E., Dotti, G., Foster, A. E., Vera, J. F., Manuri, P. R., June, C. H., Rooney, C. M., & Wilson, M. H. (2009). Optimization of the piggybac transposon system for the sustained genetic modification of human T lymphocytes. Journal of Immunotherapy, 32, 826-836. https://doi.org/10.1097/CJI.0b013e3181ad762b - PubMed
  36. Naldini, L., Blomer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F. H., Verma, I. M., & Trono, D. (1996). In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science, 272, 263-267. https://doi.org/10.2307/2889637 - PubMed
  37. Olden, B. R., Cheng, Y., Yu, J. L., & Pun, S. H. (2018). Cationic polymers for non-viral gene delivery to human T cells. Journal of Controlled Release, 282, 140-147. - PubMed
  38. Paludan, S. R., & Bowie, A. G. (2006). Cellular and gene therapy guidances - guidance for industry: Gene therapy clinical trials-observing subjects for delayed adverse events. US Department of Health and Human Services. Food and Drug Administration. Center for Biology Evaluation Research. https://www.fda.gov/vaccines-blood-biologics/biologics-guidances/cellular-gene-therapy-guidances - PubMed
  39. Pampusch, M. S., Haran, K. P., Hart, G. T., Rakasz, E. G., Rendahl, A. K., Berger, E. A., Connick, E., & Skinner, P. J. (2020). Rapid transduction and expansion of transduced T cells with maintenance of central memory populations. Molecular Therapy-Methods and Clinical Development, 16, 1-10. https://doi.org/10.1016/j.omtm.2019.09.007 - PubMed
  40. Paris, S., Burlacu, A., & Durocher, Y. (2008). Opposing roles of syndecan-1 and syndecan-2 in polyethyleneimine-mediated gene delivery. Journal of Biological Chemistry, 283, 7697-7704. https://doi.org/10.1074/jbc.M705424200 - PubMed
  41. Pine, R. Constitutive expression of an ISGF2/IRF1 transgene leads to interferon-independent activation of interferon-inducible genes and resistance to virus infection. Journal of Virology, 66, 4470-4478. https://doi.org/10.1128/jvi.66.7.4470-4478.1992 - PubMed
  42. Porter, D. L., Levine, B. L., Kalos, M., Bagg, A., & June, C. H. (2011). Chimeric antigen receptor-Modified T cells in chronic lymphoid leukemia. New England Journal of Medicine, 365, 725-733. https://doi.org/10.1056/NEJMoa1103849 - PubMed
  43. Qin, J. Y., Zhang, L., Clift, K. L., Hulur, I., Xiang, A. P., Ren, B. Z., & Lahn, B. T. (2010). Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. PLOS One, 5, e10611. https://doi.org/10.1371/journal.pone.0010611 - PubMed
  44. Qin, L., Ding, Y., Pahud, D. R., Chang, E., Imperiale, M. J., & Bromberg, J. S. (1997). Promoter attenuation in gene therapy: Interferon-γ and tumor necrosis factor-α inhibit transgene expression. Human Gene Therapy, 8, 2019-2029. https://doi.org/10.1089/hum.1997.8.17-2019 - PubMed
  45. Ramamoorth, M., & Narvekar, A. (2015). Non-viral vectors in gene therapy-An overview. Journal of Clinical and Diagnostic Research, 9, GE01. https://doi.org/10.7860/JCDR/2015/10443.5394 - PubMed
  46. Raup, A., Stahlschmidt, U., Jérôme, V., Synatschke, C., Müller, A., & Freitag, R. (2016). Influence of polyplex formation on the performance of star-shaped polycationic transfection agents for mammalian cells. Polymers, 8, 224. - PubMed
  47. Rice, J. M., Zweifach, A., & Lynes, M. A. (2016). Metallothionein regulates intracellular zinc signaling during CD4+ T cell activation. BMC Immunology, 17, 13. https://doi.org/10.1186/s12865-016-0151-2 - PubMed
  48. Ross, P. C., & Hui, S. W. (1999). Lipoplex size is a major determinant of in vitro lipofection efficiency. Gene Therapy, 6, 651-659. https://doi.org/10.1038/sj.gt.3300863 - PubMed
  49. Roth, T. L., Puig-Saus, C., Yu, R., Shifrut, E., Carnevale, J., Li, P. J., Hiatt, J., Saco, J., Krystofinski, P., Li, H., Tobin, V., Nguyen, D. N., Lee, M. R., Putnam, A. L., Ferris, A. L., Chen, J. W., Schickel, J. N., Pellerin, L., Carmody, D., … Marson, A. (2018). Reprogramming human T cell function and specificity with non-viral genome targeting. Nature, 559, 405-409. https://doi.org/10.1038/s41586-018-0326-5 - PubMed
  50. Roy, A., Ghosh, A., Kumar, B., & Chandran, B. (2019). IFI16, a nuclear innate immune DNA sensor, mediates epigenetic silencing of herpesvirus genomes by its association with methyltransferases SUV39H1 and GLP. eLife, 8, e49500. - PubMed
  51. Sadelain, M., Papapetrou, E. P., & Bushman, F. D. (2011). Safe harbours for the integration of new DNA in the human genome. Nature Reviews Cancer, 12, 51-58. https://doi.org/10.1038/nrc3179 - PubMed
  52. Sakurai, H., Kawabata, K., Sakurai, F., Nakagawa, S., & Mizuguchi, H. (2008). Innate immune response induced by gene delivery vectors. International Journal of Phamaceutics, 354, 9-15. https://doi.org/10.1016/j.ijpharm.2007.06.012 - PubMed
  53. Sarrazin, S., Lamanna, W. C., & Esko, J. D. (2011). Heparan sulfate proteoglycans. Cold Spring Harbor Perspectives in Biology, 3, 1-33. https://doi.org/10.1101/cshperspect.a004952 - PubMed
  54. Schallon, A., Synatschke, C. V., Jérôme, V., Müller, A. H. E., & Freitag, R. (2012). Nanoparticulate nonviral agent for the effective delivery of pDNA and siRNA to differentiated cells and primary human T lymphocytes. Biomacromolecules, 13, 3463-3474. - PubMed
  55. Scholler, J., Brady, T. L., Binder-Scholl, G., Hwang, W. T., Plesa, G., Hege, K. M., Vogel, A. N., Kalos, M., Riley, J. L., Deeks, S. G., Mitsuyasu, R. T., Bernstein, W. B., Aronson, N. E., Levine, B. L., Bushman, F. D., & June, C. H. (2012). Decade-long safety and function of retroviral-modified chimeric antigen receptor T cells. Science Translational Medicine, 4, 132ra53. https://doi.org/10.1126/scitranslmed.3003761 - PubMed
  56. Sellins, K., Fradkin, L., Liggitt, D., & Dow, S. (2005). Type I interferons potently suppress gene expression following gene delivery using liposome-DNA complexes. Molecular Therapy, 12, 451-459. https://doi.org/10.1016/j.ymthe.2005.04.008 - PubMed
  57. Smith, T. T., Stephan, S. B., Moffett, H. F., McKnight, L. E., Ji, W., Reiman, D., Bonagofski, E., Wohlfahrt, M. E., Pillai, S. P. S., & Stephan, M. T. (2017). In situ programming of leukaemia-specific t cells using synthetic DNA nanocarriers. Nature Nanotechnology, 12, 813-822. - PubMed
  58. Spillmann, D. (2001). Heparan sulfate: anchor for viral intruders? Biochimie, 83, 811-817. https://doi.org/10.1016/s0300-9084(01)01290-1 - PubMed
  59. Subramanian, V. K., & Deepe, G. S., Jr. (2017). Metallothioneins: Emerging modulators in immunity and infection. International Journal of Molecular Sciences, 18, 2197. https://doi.org/10.3390/ijms18102197 - PubMed
  60. Sutlu, T., Nyström, S., Gilljam, M., Stellan, B., Applequist, S. E., & Alici, E. (2012). Inhibition of intracellular antiviral defense mechanisms augments lentiviral transduction of human natural killer cells: Implications for gene therapy. Human Gene Therapy, 23, 1090-1100. https://doi.org/10.1089/hum.2012.080 - PubMed
  61. Teixé, T., Nieto-Blanco, P., Vilella, R., Engel, P., Reina, M., & Espel, E. (2008). Syndecan-2 and -4 expressed on activated primary human CD4+ lymphocytes can regulate T cell activation. Molecular Immunology, 45, 2905-2919. https://doi.org/10.1016/j.molimm.2008.01.033 - PubMed
  62. Van Tendeloo, V. F. I., Willems, R., Ponsaerts, P., Lenjou, M., Nijs, G., Vanhove, M., Muylaert, P., Van Cauwelaert, P., Van Broeckhoven, C., Van Bockstaele, D., & Berneman, Z. (2000). High-level transgene expression in primary human T lymphocytes and adult bone marrow CD34+ cells via electroporation-mediated gene delivery. Gene Therapy, 7, 1431-1437. https://doi.org/10.1038/sj.gt.3301252 - PubMed
  63. Tumeh, P. C., Koya, R. C., Chodon, T., Graham, N. A., Graeber, T. G., Comin-Anduix, B., & Ribas, A. (2010). The impact of ex vivo clinical grade activation protocols on human T cell phenotype and function for the generation of genetically modified cells for adoptive cell transfer therapy. Journal of Immunotherapy, 33, 759-768. https://doi.org/10.1097/CJI.0b013e3181f1d644 - PubMed
  64. Turtle, C. J., Hanafi, L.-A., Berger, C., Gooley, T. A., Cherian, S., Hudecek, M., Sommermeyer, D., Melville, K., Pender, B., Budiarto, T. M., Robinson, E., Steevens, N. N., Chaney, C., Soma, L., Chen, X., Yeung, C., Wood, B., Li, D., Cao, J., … Maloney, D. G. (2016). CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. Journal of Clinical Investigation, 126, 2123-2138. https://doi.org/10.1172/JCI85309 - PubMed
  65. Turtle, C. J., Hanafi, L.-A., Berger, C., Hudecek, M., Pender, B., Robinson, E., Hawkins, R., Chaney, C., Cherian, S., Chen, X., Soma, L., Wood, B., Li, D., Heimfeld, S., Riddell, S. R., & Maloney, D. G. (2016). Immunotherapy of non-Hodgkin's lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Science Translational Medicine, 8, 355ra116. https://doi.org/10.1126/scitranslmed.aaf8621 - PubMed
  66. Vannucci, L., Lai, M., Chiuppesi, F., Ceccherini-Nelli, L., & Pistello, M. (2013). Viral vectors: a look back and ahead on gene transfer technology. New Microbiologica, 36, 1-22. - PubMed
  67. Varkouhi, A. K., Scholte, M., Storm, G., & Haisma, H. J. (2011). Endosomal escape pathways for delivery of biologicals. Journal of Controlled Release, 151, 220-228. https://doi.org/10.1016/j.jconrel.2010.11.004 - PubMed
  68. Wang, Z., Wu, Z., Liu, Y., & Han, W. (2017). New development in CAR-T cell therapy. Journal of Hematology & Oncology, 10, 53. https://doi.org/10.1186/s13045-017-0423-1 - PubMed
  69. Xie, Y., Kim, N. H., Nadithe, V., Schalk, D., Thakur, A., Kılıç, A., Lum, L. G., Bassett, D. J. P., & Merkel, O. M. (2016). Targeted delivery of siRNA to activated T cells via transferrin-polyethylenimine (Tf-PEI) as a potential therapy of asthma. Journal of Controlled Release, 229, 120-129. - PubMed
  70. Yanagihara, K., Cheng, H., & Cheng, P.-W. (2000). Effects of epidermal growth factor, transferrin, and insulin on lipofection efficiency in human lung carcinoma cells. Cancer Gene Therapy, 7, 59-65. https://doi.org/10.1038/sj.cgt.7700092 - PubMed
  71. Yang, J.-P., & Huang, L. (1997). Overcoming the inhibitory effect of serum on lipofection by increasing the charge ratio of cationic liposome to DNA. Gene Therapy, 4, 950-960. - PubMed
  72. Zhang, Z., Qiu, S., Zhang, X., & Chen, W. (2018). Optimized DNA electroporation for primary human T cell engineering. BMC Biotechnology, 18, 4. https://doi.org/10.1186/s12896-018-0419-0 - PubMed
  73. Zhao, N., Qi, J., Zeng, Z., Parekh, P., Chang, C. C., Tung, C. H., & Zu, Y. (2012). Transfecting the hard-to-transfect lymphoma/leukemia cells using a simple cationic polymer nanocomplex. Journal of Controlled Release, 159, 104-110. https://doi.org/10.1016/j.jconrel.2012.01.007 - PubMed
  74. Zhao, Y., Zheng, Z., Cohen, C. J., Gattinoni, L., Palmer, D. C., Restifo, N. P., Rosenberg, S. A., & Morgan, R. A. (2006). High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation. Molecular Therapy, 13, 151-159. https://doi.org/10.1016/J.YMTHE.2005.07.688 - PubMed

Publication Types