Display options
Share it on

Phys Imaging Radiat Oncol. 2020 Oct 17;16:69-73. doi: 10.1016/j.phro.2020.09.007. eCollection 2020 Oct.

Quantitative magnetic resonance imaging on hybrid magnetic resonance linear accelerators: Perspective on technical and clinical validation.

Physics and imaging in radiation oncology

Daniela Thorwarth, Matthias Ege, Marcel Nachbar, David Mönnich, Cihan Gani, Daniel Zips, Simon Boeke

Affiliations

  1. Section for Biomedical Physics, Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany.
  2. German Cancer Consortium (DKTK), Partner Site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
  3. Department for Radiation Oncology, University Hospital Tübingen, Tübingen, Germany.

PMID: 33458346 PMCID: PMC7807787 DOI: 10.1016/j.phro.2020.09.007

Abstract

Many preclinical and clinical observations support that functional magnetic resonance imaging (MRI), such as diffusion weighted (DW) and dynamic contrast enhanced (DCE) MRI, might have a predictive value for radiotherapy. The aim of this review was to assess the current status of quantitative MRI on hybrid MR-Linacs. In a literature research, four publications were identified, investigating technical feasibility, accuracy, repeatability and reproducibility of DW and DCE-MRI in phantoms and first patients. Accuracy and short term repeatability was < 5% for DW-MRI in current MR-Linac systems. Consequently, quantitative imaging providing accurate and reproducible functional information seems possible in MR-Linacs.

© 2020 The Authors.

Keywords: Diffusion-weighted MRI; MR-Linac; MR-guided radiotherapy; Quantitative MRI

Conflict of interest statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

  1. J Magn Reson Imaging. 2019 Jun;49(7):e101-e121 - PubMed
  2. Phys Med. 2016 Dec;32(12):1672-1680 - PubMed
  3. Clin Cancer Res. 2009 Feb 1;15(3):986-94 - PubMed
  4. Nat Rev Clin Oncol. 2017 Mar;14(3):169-186 - PubMed
  5. Acta Oncol. 2019 Oct;58(10):1352-1357 - PubMed
  6. Clin Transl Radiat Oncol. 2018 Sep 20;13:29-37 - PubMed
  7. Tech Innov Patient Support Radiat Oncol. 2019 Dec 16;12:56-63 - PubMed
  8. Eur J Cancer. 2019 Nov;122:42-52 - PubMed
  9. Lancet Oncol. 2007 Jan;8(1):63-74 - PubMed
  10. Clin Transl Radiat Oncol. 2019 Apr 08;18:98-101 - PubMed
  11. Radiother Oncol. 2019 Mar;132:114-120 - PubMed
  12. Med Phys. 2016 Mar;43(3):1369-73 - PubMed
  13. Radiother Oncol. 2020 May;146:66-75 - PubMed
  14. Eur Radiol. 2010 Sep;20(9):2213-20 - PubMed
  15. Eur J Radiol. 2019 Apr;113:39-50 - PubMed
  16. Radiology. 2013 Feb;266(2):531-8 - PubMed
  17. Clin Transl Radiat Oncol. 2020 Apr 29;23:35-42 - PubMed
  18. Radiat Oncol. 2020 May 5;15(1):93 - PubMed
  19. Med Phys. 2017 Oct;44(10):5357-5366 - PubMed
  20. Cancer Res. 2012 Oct 15;72(20):5285-95 - PubMed
  21. Phys Med Biol. 2019 Nov 15;64(22):225003 - PubMed
  22. Radiother Oncol. 2019 Apr;133:156-162 - PubMed
  23. Radiology. 2016 Jan;278(1):13-32 - PubMed
  24. Eur Radiol. 2010 Jul;20(7):1703-14 - PubMed
  25. Br J Radiol. 2017 Apr;90(1072):20151078 - PubMed
  26. Radiother Oncol. 2019 May;134:50-54 - PubMed
  27. Sci Rep. 2019 Dec 27;9(1):19830 - PubMed
  28. Radiother Oncol. 2020 Apr;145:30-35 - PubMed
  29. Radiother Oncol. 2014 Mar;110(3):429-34 - PubMed
  30. Radiother Oncol. 2016 Feb;118(2):416-8 - PubMed
  31. Oral Oncol. 2019 Jan;88:75-83 - PubMed
  32. Cureus. 2018 Apr 11;10(4):e2465 - PubMed
  33. Phys Med Biol. 2017 Apr 21;62(8):2990-3002 - PubMed
  34. Clin Transl Radiat Oncol. 2020 May 15;23:72-79 - PubMed
  35. Int J Radiat Oncol Biol Phys. 2018 Nov 15;102(4):683-686 - PubMed
  36. Clin Transl Radiat Oncol. 2019 Apr 02;18:54-59 - PubMed
  37. Clin Oncol (R Coll Radiol). 2018 Nov;30(11):702-710 - PubMed
  38. Transl Lung Cancer Res. 2017 Dec;6(6):689-707 - PubMed
  39. Phys Imaging Radiat Oncol. 2020 Jul;15:1-7 - PubMed

Publication Types