Display options
Share it on

J Cheminform. 2019 Nov 09;11(1):67. doi: 10.1186/s13321-019-0390-3.

Identifying new topoisomerase II poison scaffolds by combining publicly available toxicity data and 2D/3D-based virtual screening.

Journal of cheminformatics

Anna Lovrics, Veronika F S Pape, Dániel Szisz, Adrián Kalászi, Petra Heffeter, Csaba Magyar, Gergely Szakács

Affiliations

  1. Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1117, Hungary.
  2. Department of Physiology, Semmelweis University, Faculty of Medicine, Budapest, 1094, Hungary.
  3. ChemAxon Ltd., Graphisoft park, Záhony u. 7, Budapest, 1031, Hungary.
  4. Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria.
  5. Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1117, Hungary. [email protected].
  6. Institute of Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria. [email protected].

PMID: 33430961 PMCID: PMC6842385 DOI: 10.1186/s13321-019-0390-3

Abstract

Molecular descriptor (2D) and three dimensional (3D) shape based similarity methods are widely used in ligand based virtual drug design. In the present study pairwise structure comparisons among a set of 4858 DTP compounds tested in the NCI60 tumor cell line anticancer drug screen were computed using chemical hashed fingerprints and 3D molecule shapes to calculate 2D and 3D similarities, respectively. Additionally, pairwise biological activity similarities were calculated by correlating the 60 element vectors of pGI50 values corresponding to the cytotoxicity of the compounds across the NCI60 panel. Subsequently, we compared the power of 2D and 3D structural similarity metrics to predict the toxicity pattern of compounds. We found that while the positive predictive value and sensitivity of 3D and molecular descriptor based approaches to predict biological activity are similar, a subset of molecule pairs yielded contradictory results. By simultaneously requiring similarity of biological activities and 3D shapes, and dissimilarity of molecular descriptor based comparisons, we identify pairs of scaffold hopping candidates displaying characteristic core structural changes such as heteroatom/heterocycle change and ring closure. Attempts to discover scaffold hopping candidates of mitoxantrone recovered known Topoisomerase II (Top2) inhibitors, and also predicted new, previously unknown chemotypes possessing in vitro Top2 inhibitory activity.

Keywords: Mitoxantrone; NCI60 cell panel; Scaffold hopping; Topoisomerase II poisons; Virtual screening

References

  1. Nat Rev Cancer. 2006 Oct;6(10):789-802 - PubMed
  2. Mol Cancer Ther. 2005 Oct;4(10):1559-68 - PubMed
  3. J Chem Inf Model. 2014 Apr 28;54(4):1036-49 - PubMed
  4. Nucleic Acids Res. 2000 Jan 1;28(1):235-42 - PubMed
  5. Science. 2014 Apr 11;344(6180):208-11 - PubMed
  6. Mol Nutr Food Res. 2009 Sep;53(9):1112-22 - PubMed
  7. Nucleic Acids Res. 2013 Dec;41(22):10630-40 - PubMed
  8. J Chem Inf Model. 2010 Dec 27;50(12):2079-93 - PubMed
  9. Cancer Res. 2012 Jul 15;72(14):3499-511 - PubMed
  10. Science. 1997 Jan 17;275(5298):343-9 - PubMed
  11. J Chem Inf Model. 2018 Oct 22;58(10):2051-2056 - PubMed
  12. Expert Opin Ther Targets. 2012 Jan;16(1):15-31 - PubMed
  13. J Chem Inf Model. 2010 Jul 26;50(7):1189-204 - PubMed
  14. Clin Pharmacol Ther. 2013 Apr;93(4):299-301 - PubMed
  15. J Chem Inf Comput Sci. 2002 Mar-Apr;42(2):393-404 - PubMed
  16. J Med Chem. 2007 Jan 11;50(1):74-82 - PubMed
  17. J Med Chem. 2010 May 27;53(10):3862-86 - PubMed
  18. J Chem Inf Model. 2007 Jul-Aug;47(4):1504-19 - PubMed
  19. J Med Chem. 2017 Feb 23;60(4):1238-1246 - PubMed
  20. Mol Cancer Ther. 2007 Mar;6(3):820-32 - PubMed
  21. J Chem Inf Model. 2006 Jan-Feb;46(1):430-7 - PubMed
  22. J Med Chem. 2011 Mar 24;54(6):1576-86 - PubMed
  23. J Med Chem. 2012 Jul 26;55(14):6582-94 - PubMed
  24. J Med Chem. 2002 Feb 14;45(4):818-40 - PubMed
  25. J Chem Inf Model. 2016 Jul 25;56(7):1243-52 - PubMed
  26. Science. 1992 Oct 16;258(5081):447-51 - PubMed
  27. J Med Chem. 2006 Mar 9;49(5):1536-48 - PubMed
  28. J Chem Inf Model. 2010 Feb 22;50(2):205-16 - PubMed
  29. Mol Pharmacol. 2000 Sep;58(3):649-58 - PubMed
  30. Science. 2008 Jul 11;321(5886):263-6 - PubMed
  31. Nat Rev Drug Discov. 2014 Aug;13(8):588-602 - PubMed
  32. Curr Opin Drug Discov Devel. 2008 Jul;11(4):559-68 - PubMed
  33. J Med Chem. 2005 Mar 10;48(5):1489-95 - PubMed
  34. Nat Rev Cancer. 2006 Oct;6(10):813-23 - PubMed
  35. AAPS J. 2012 Mar;14(1):133-41 - PubMed
  36. Nat Rev Drug Discov. 2014 Feb;13(2):105-21 - PubMed
  37. J Chem Inf Model. 2010 Jun 28;50(6):992-1004 - PubMed
  38. J Med Chem. 2004 Dec 2;47(25):6144-59 - PubMed
  39. Anticancer Drug Des. 2000 Apr;15(2):79-98 - PubMed
  40. J Chem Inf Model. 2010 Apr 26;50(4):572-84 - PubMed
  41. Mol Syst Biol. 2010;6:343 - PubMed
  42. J Natl Cancer Inst. 1989 Jul 19;81(14):1088-92 - PubMed
  43. Drug Discov Today. 2012 Apr;17(7-8):310-24 - PubMed
  44. J Chem Inf Model. 2010 May 24;50(5):742-54 - PubMed
  45. J Chem Inf Model. 2006 Jul-Aug;46(4):1827-35 - PubMed
  46. Mol Pharmacol. 1996 May;49(5):772-80 - PubMed
  47. Cancer Cell. 2004 Aug;6(2):129-37 - PubMed
  48. Science. 2006 Sep 29;313(5795):1929-35 - PubMed
  49. Science. 2011 Jul 22;333(6041):459-62 - PubMed

Publication Types

Grant support