Display options
Share it on

Biochem Biophys Rep. 2021 Jan 06;25:100891. doi: 10.1016/j.bbrep.2020.100891. eCollection 2021 Mar.

Ellagic acid and its fermentative derivative urolithin A show reverse effects on the gp91-phox gene expression, resulting in opposite alterations in all-.

Biochemistry and biophysics reports

Hidehiko Kikuchi, Kaori Harata, Harishkumar Madhyastha, Futoshi Kuribayashi

Affiliations

  1. Department of Food and Nutrition, Shokei University Junior College, 2-6-78 Kuhonji, Chuo-ku, Kumamoto, 862-8678, Japan.
  2. Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, 5200, Kihara, Kiyotake, Miyazaki, 889-1692, Japan.
  3. Department of Biochemistry, Kawasaki Medical School, Kurashiki, Okayama, 701-0192, Japan.

PMID: 33490645 PMCID: PMC7806786 DOI: 10.1016/j.bbrep.2020.100891

Abstract

Ellagitannins (esters composed of glucose and ellagic acid) are hydrolyzed to generate ellagic acid in gut followed by conversion of ellagic acid to urolithins such as urolithin A by intestinal bacteria. Since urolithins are absorbed by gut easier than ellagitannins and ellagic acid, and show various physiological activities (e.g. anti-cancer, anti-cardiovascular disease, anti-diabetes mellitus, anti-obesity and anti-Alzheimer disease activities), they are expected as excellent health-promoting phytochemicals. Here, using human monoblast U937 cells, we investigated the effect of ellagic acid and urolithin A on the superoxide anion (O

© 2021 The Authors.

Keywords: ATRA, all-trans retinoic acid; All-trans retinoic acid; ChIP, chromatin immunoprecipitation; Ellagic acid; H3K14, Lys-14 residues of histone H3; H3K9, Lys-9 residues of histone H3; O2−, superoxide anion; PMA, phorbol 12-myristate 13-acetate; Superoxide; U937; Urolithin A; gp91-phox

Conflict of interest statement

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: This work was supported in part by JSPS KAKENHI Grant Number 19K0

References

  1. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6085-90 - PubMed
  2. Metabolites. 2018 Nov 29;8(4): - PubMed
  3. J Biol Chem. 2005 Apr 1;280(13):12359-70 - PubMed
  4. Eur J Biochem. 1991 Nov 1;201(3):523-46 - PubMed
  5. Curr Opin Immunol. 2020 Feb;62:54-61 - PubMed
  6. Mol Nutr Food Res. 2020 May;64(9):e1900952 - PubMed
  7. Crit Rev Food Sci Nutr. 2017 Nov 2;57(16):3373-3383 - PubMed
  8. J Leukoc Biol. 1985 Apr;37(4):407-22 - PubMed
  9. Front Immunol. 2018 Nov 27;9:2733 - PubMed
  10. Cell. 2007 Nov 16;131(4):633-6 - PubMed
  11. Recent Pat Antiinfect Drug Discov. 2008 Nov;3(3):225-30 - PubMed
  12. BMC Genomics. 2012 Aug 24;13:424 - PubMed
  13. Biochem Biophys Res Commun. 2010 Apr 23;395(1):61-5 - PubMed
  14. Microbiol Immunol. 2019 Oct;63(10):438-443 - PubMed
  15. J Biochem. 1994 Oct;116(4):742-6 - PubMed
  16. Pharmacol Res. 2019 Sep;147:104367 - PubMed
  17. J Biol Chem. 2002 Mar 15;277(11):9103-11 - PubMed
  18. Biochem Biophys Res Commun. 2018 Jan 1;495(1):1195-1200 - PubMed
  19. J Agric Food Chem. 2005 Jul 13;53(14):5571-6 - PubMed
  20. Adv Nutr. 2016 Jan 15;7(1):44-65 - PubMed
  21. J Biol Chem. 2012 Nov 16;287(47):39842-9 - PubMed
  22. Mol Nutr Food Res. 2017 Jan;61(1): - PubMed
  23. Molecules. 2017 Sep 25;22(10): - PubMed
  24. J Immunol. 2011 Mar 1;186(5):3015-22 - PubMed
  25. Gut. 2018 Sep;67(9):1716-1725 - PubMed
  26. Blood. 2001 Jul 15;98(2):436-41 - PubMed
  27. Crit Rev Food Sci Nutr. 2014;54(12):1584-98 - PubMed
  28. Biochimie. 2007 Sep;89(9):1123-32 - PubMed

Publication Types