Display options
Share it on

Angew Chem Int Ed Engl. 2021 Apr 06;60(15):8537-8541. doi: 10.1002/anie.202016268. Epub 2021 Mar 05.

Silver-Catalysed Hydroarylation of Highly Substituted Styrenes.

Angewandte Chemie (International ed. in English)

Toryn Dalton, Steffen Greßies, Mowpriya Das, Maximilian Niehues, Malte L Schrader, Christian Gutheil, Bart Jan Ravoo, Frank Glorius

Affiliations

  1. Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstrasse 40, 48149, Münster, Germany.

PMID: 33493358 DOI: 10.1002/anie.202016268

Abstract

Hydroarylation is an effective strategy to rapidly increase the complexity of organic structures by transforming flat alkene moieties into three-dimensional frameworks. Many strategies have already been developed to achieve the hydroarylation of styrenes, however most of these reports examine the hydroarylation of unpolar, β-mono- or β-unsubstituted styrenes, while exploring mainly electron-rich benzene nucleophiles. Herein, we report a mild and general catalytic system for the selective hydroheteroarylation of multiply substituted styrenes and heteroaromatic styrenes. Mechanistic analysis of the reaction led to the discovery of commercially available 2,2':5',2''-terthiophene as a key reagent.

© 2021 Wiley-VCH GmbH.

Keywords: catalysis; heteroarenes; hydroarylation; silver; styrenes

References

  1. Reviews: - PubMed
  2. Z. Dong, Z. Ren, S. J. Thompson, Y. Xu, G. Dong, Chem. Rev. 2017, 117, 9333-9403; - PubMed
  3. G. Evano, C. Theunissen, Angew. Chem. Int. Ed. 2019, 58, 7202-7236; - PubMed
  4. Angew. Chem. 2019, 131, 7278-7314; - PubMed
  5. G. Evano, C. Theunissen, Angew. Chem. Int. Ed. 2019, 58, 7558-7598; - PubMed
  6. Angew. Chem. 2019, 131, 7638-7680. - PubMed
  7. Selected examples: - PubMed
  8. Y. Nakao, N. Kashihara, K. Stephen Kanyiva, T. Hiyama, Angew. Chem. Int. Ed. 2010, 49, 4451-4454; - PubMed
  9. Angew. Chem. 2010, 122, 4553-4556; - PubMed
  10. K. Gao, N. Yoshikai, J. Am. Chem. Soc. 2011, 133, 400-402; - PubMed
  11. P. S. Lee, N. Yoshikai, Angew. Chem. Int. Ed. 2013, 52, 1240-1244; - PubMed
  12. Angew. Chem. 2013, 125, 1278-1282; - PubMed
  13. T. Andou, Y. Saga, H. Komai, S. Matsunaga, M. Kanai, Angew. Chem. Int. Ed. 2013, 52, 3213-3216; - PubMed
  14. Angew. Chem. 2013, 125, 3295-3298; - PubMed
  15. G. E. M. Crisenza, N. G. McCreanor, J. F. Bower, J. Am. Chem. Soc. 2014, 136, 10258-10261; - PubMed
  16. G. E. M. Crisenza, O. O. Sokolova, J. F. Bower, Angew. Chem. Int. Ed. 2015, 54, 14866-14870; - PubMed
  17. Angew. Chem. 2015, 127, 15079-15083; - PubMed
  18. D. Wang, B. Dong, Y. Wang, J. Qian, J. Zhu, Y. Zhao, Z. Shi, Nat. Commun. 2019, 10, 3539-3548; - PubMed
  19. N. I. Saper, A. Ohgi, D. W. Small, K. Semba, Y. Nakao, J. F. Hartwig, Nat. Chem. 2020, 12, 276-283. - PubMed
  20.   - PubMed
  21. S. D. Friis, M. T. Pirnot, S. L. Buchwald, J. Am. Chem. Soc. 2016, 138, 8372-8375; - PubMed
  22. F. Lied, H. Brodnik Žugelj, S. Kress, B. Štefane, F. Glorius, M. Lautens, ACS Catal. 2017, 7, 1378-1382; - PubMed
  23. L. J. Xiao, L. Cheng, W. M. Feng, M. L. Li, J. H. Xie, Q. L. Zhou, Angew. Chem. Int. Ed. 2018, 57, 461-464; - PubMed
  24. Angew. Chem. 2018, 130, 470-473; - PubMed
  25. Y. G. Chen, B. Shuai, X. T. Xu, Y. Q. Li, Q. L. Yang, H. Qiu, K. Zhang, P. Fang, T. S. Mei, J. Am. Chem. Soc. 2019, 141, 3395-3399; - PubMed
  26. J. Nguyen, A. Chong, G. Lalic, Chem. Sci. 2019, 10, 3231-3236; - PubMed
  27. Y. He, C. Liu, L. Yu, S. Zhu, Angew. Chem. Int. Ed. 2020, 59, 21530-21534; - PubMed
  28. Angew. Chem. 2020, 132, 21714-21718; - PubMed
  29. H. Cheng, T. Lam, Y. Liu, Z. Tang, C. Che, Angew. Chem. Int. Ed. 2021, 60, 1383-1389; - PubMed
  30. Angew. Chem. 2021, 133, 1403-1409. - PubMed
  31.   - PubMed
  32. Y. P. Xiao, X. Y. Liu, C. M. Che, J. Organomet. Chem. 2009, 694, 494-501; - PubMed
  33. X. Hu, D. Martin, M. Melaimi, G. Bertrand, J. Am. Chem. Soc. 2014, 136, 13594-13597; - PubMed
  34. I. Abdellah, A. Poater, J.-F. Lohier, A.-C. Gaumont, Catal. Sci. Technol. 2018, 8, 6486-6492. - PubMed
  35.   - PubMed
  36. M. Niggemann, N. Bisek, Chem. Eur. J. 2010, 16, 11246-11249; - PubMed
  37. C. Qi, V. Gandon, D. Lebœuf, Angew. Chem. Int. Ed. 2018, 57, 14245-14249; - PubMed
  38. Angew. Chem. 2018, 130, 14441-14445; - PubMed
  39. S. Wang, G. Force, R. Guillot, J.-F. Carpentier, Y. Sarazin, C. Bour, V. Gandon, D. Lebœuf, ACS Catal. 2020, 10, 10794-10802. - PubMed
  40.   - PubMed
  41. J. Kischel, I. Jovel, K. Mertins, A. Zapf, M. Beller, Org. Lett. 2006, 8, 19-22; - PubMed
  42. J. R. Cabrero-Antonino, A. Leyva-Pérez, A. Corma, Adv. Synth. Catal. 2010, 352, 1571-1576. - PubMed
  43.   - PubMed
  44. M. Rueping, B. J. Nachtsheim, T. Scheidt, Org. Lett. 2006, 8, 3717-3719; - PubMed
  45. H.-B. Sun, B. Li, R. Hua, Y. Yin, Eur. J. Org. Chem. 2006, 4231-4236; - PubMed
  46. B. Cacciuttolo, S. Poulain-Martini, E. Duñach, Eur. J. Org. Chem. 2011, 3710-3714. - PubMed
  47.   - PubMed
  48. I. Shimizu, K. M. Khien, M. Nagatomo, T. Nakajima, A. Yamamoto, Chem. Lett. 1997, 26, 851-852; - PubMed
  49. G. Sun, H. Sun, Z. Wang, M. M. Zhou, Synlett 2008, 1096-1100; - PubMed
  50. S. Y. Lee, A. Villani-Gale, C. C. Eichman, Org. Lett. 2016, 18, 5034-5037. - PubMed
  51.   - PubMed
  52. C. M. Chu, W. J. Huang, J. T. Liu, C. F. Yao, Tetrahedron Lett. 2007, 48, 6881-6885; - PubMed
  53. G.-J. Sun, T.-C. Zhang, L.-S. Sheng, F. Qi, Z.-Y. Wang, Chin. J. Chem. 2008, 26, 321-327. - PubMed
  54.   - PubMed
  55. P. H. Buu-Hoï, H. Le Bihan, F. Binon, J. Org. Chem. 1952, 17, 243-248; - PubMed
  56. M. Beller, O. R. Thiel, H. Trauthwein, Synlett 1999, 243-245; - PubMed
  57. J. Wen, H. Qi, X. Kong, L. Chen, X. Yan, Synth. Commun. 2014, 44, 1893-1903; - PubMed
  58. C. D. T. Nielsen, A. J. P. White, D. Sale, J. Bures, A. C. Spivey, J. Org. Chem. 2019, 84, 14965-14973; - PubMed
  59. S. Wu, J. Dong, D. Zhou, W. Wang, L. Liu, Y. Zhou, J. Org. Chem. 2020, 85, 14307-14314. - PubMed
  60.   - PubMed
  61. M. Rueping, T. Bootwicha, E. Sugiono, Adv. Synth. Catal. 2010, 352, 2961-2965; - PubMed
  62. D. C. Mohan, R. D. Patil, S. Adimurthy, Eur. J. Org. Chem. 2012, 3520-3525; - PubMed
  63. S. Varghese, S. Nagarajan, M. R. Benzigar, A. Mano, Z. A. Alothman, G. A. G. Raj, A. Vinu, Tetrahedron Lett. 2012, 53, 1485-1489; - PubMed
  64. F. Hu, M. Patel, F. Luo, C. Flach, R. Mendelsohn, E. Garfunkel, H. He, M. Szostak, J. Am. Chem. Soc. 2015, 137, 14473-14480. - PubMed
  65. B. J. J. Smeets, R. H. Meijer, J. Meuldijk, J. A. J. M. Vekemans, L. A. Hulshof, Org. Process Res. Dev. 2003, 7, 10-16. - PubMed
  66. L. Pitzer, F. Schäfers, F. Glorius, Angew. Chem. Int. Ed. 2019, 58, 8572-8576; - PubMed
  67. Angew. Chem. 2019, 131, 8660-8664. - PubMed
  68. G. Fang, X. Bi, Chem. Soc. Rev. 2015, 44, 8124-8173. - PubMed
  69. L. Pitzer, F. Sandfort, F. Strieth-Kalthoff, F. Glorius, J. Am. Chem. Soc. 2017, 139, 13652-13655. - PubMed
  70. K. Shimizu, Y. Miyamoto, A. Satsuma, ChemCatChem 2010, 2, 84-91. - PubMed

Publication Types

Grant support