Display options
Share it on

Animals (Basel). 2021 Jan 15;11(1). doi: 10.3390/ani11010200.

Comparison of Growth Performance and Meat Quality Traits of Commercial Cross-Bred Pigs versus the Large Black Pig Breed.

Animals : an open access journal from MDPI

Yongjie Wang, Keshari Thakali, Palika Morse, Sarah Shelby, Jinglong Chen, Jason Apple, Yan Huang

Affiliations

  1. Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA.
  2. Arkansas Children's Nutrition Center, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72207, USA.
  3. Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
  4. Department of Animal Science and Veterinary Technology, Texas A&M University, Kingsville, TX 78363, USA.

PMID: 33467586 PMCID: PMC7830199 DOI: 10.3390/ani11010200

Abstract

The meat quality of different pig breeds is associated with their different muscle tissue physiological processes, which involves a large variety of genes related with muscle fat and energy metabolism. Understanding the differences of biological processes of muscle after slaughter is helpful to reveal the meat quality development of different breeds. Therefore, eight native Large Black pigs (BP), with high fat content in meat, and seven cross-bred commercial pigs (CP), which had a high feed efficiency with high lean meat, were used to investigate the differences in their meat quality and RNA transcriptomes. The average daily gain (ADG) and hot carcass weight (HCW) of CP were higher than BP, but the back-fat thickness of BP was higher than CP (

Keywords: RNA-seq; commercial cross-bred; intramuscular fat; meat quality; purebred

References

  1. Nat Protoc. 2009;4(1):44-57 - PubMed
  2. Sci Rep. 2016 Nov 03;6:36354 - PubMed
  3. Biochim Biophys Acta. 2010 Mar;1801(3):246-51 - PubMed
  4. Meat Sci. 2013 Sep;95(1):27-35 - PubMed
  5. Genome Biol. 2003;4(5):P3 - PubMed
  6. J Anim Sci. 2013 Sep;91(9):4540-6 - PubMed
  7. J Nutr Biochem. 2018 May;55:157-164 - PubMed
  8. PLoS Genet. 2019 Oct 11;15(10):e1008279 - PubMed
  9. J Anim Sci. 2007 Jun;85(6):1511-21 - PubMed
  10. Gastroenterology. 2000 Jun;118(6):1061-71 - PubMed
  11. Prog Lipid Res. 2015 Jul;59:1-25 - PubMed
  12. Pharmacogenet Genomics. 2011 Dec;21(12):798-807 - PubMed
  13. Circulation. 1999 Sep 14;100(11):1253-8 - PubMed
  14. PLoS One. 2011;6(5):e19774 - PubMed
  15. J Exp Biol. 2003 Jun;206(Pt 12):2011-20 - PubMed
  16. Meat Sci. 2003 Jul;64(3):219-37 - PubMed
  17. Int J Mol Sci. 2011;12(3):1727-34 - PubMed
  18. J Anim Sci. 2016 Jun;94(6):2592-602 - PubMed
  19. BMC Genomics. 2011 Aug 18;12:417 - PubMed
  20. Anim Genet. 2002 Feb;33(1):49-55 - PubMed
  21. Asian-Australas J Anim Sci. 2018 Jun;31(6):914-918 - PubMed
  22. Meat Sci. 2010 Feb;84(2):293-300 - PubMed
  23. BMC Biol. 2012 Nov 15;10:90 - PubMed
  24. Placenta. 2014 Dec;35(12):1013-20 - PubMed
  25. J Anim Sci. 1992 Aug;70(8):2373-86 - PubMed
  26. Anim Genet. 2013 Dec;44(6):648-60 - PubMed
  27. Meat Sci. 2012 Jul;91(3):358-63 - PubMed
  28. Meat Sci. 2005 Jan;69(1):61-70 - PubMed
  29. Bioinformatics. 2010 Jan 1;26(1):139-40 - PubMed
  30. J Agric Food Chem. 2005 Feb 23;53(4):1223-30 - PubMed
  31. Meat Sci. 2009 May;82(1):6-12 - PubMed
  32. Am J Physiol Endocrinol Metab. 2010 Dec;299(6):E968-75 - PubMed
  33. Nat Rev Genet. 2011 Feb;12(2):87-98 - PubMed
  34. Bioinformatics. 2013 Jan 1;29(1):15-21 - PubMed
  35. Meat Sci. 2003 Apr;63(4):469-77 - PubMed
  36. Nat Rev Genet. 2011 Sep 07;12(10):671-82 - PubMed

Publication Types

Grant support