Display options
Share it on

Pharmaceutics. 2021 Jan 24;13(2). doi: 10.3390/pharmaceutics13020151.

The Antifungal and Ocular Permeation of Ketoconazole from Ophthalmic Formulations Containing Trans-Ethosomes Nanoparticles.

Pharmaceutics

Tarek A Ahmed, Maram M Alzahrani, Alaa Sirwi, Nabil A Alhakamy

Affiliations

  1. Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
  2. Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt.
  3. Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
  4. Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

PMID: 33498849 PMCID: PMC7912274 DOI: 10.3390/pharmaceutics13020151

Abstract

Ketoconazole (KET), a synthetic imidazole broad-spectrum antifungal agent, is characterized by its poor aqueous solubility and high molecular weight, which might hamper its corneal permeation. The aim was to develop an ophthalmic formulation loaded with optimized trans-ethosomal vesicles to enhance KET ocular permeation, antifungal activity, rapid drug drainage, and short elimination half-life. Four formulation factors affecting the vesicles' size, zeta potential, entrapment efficiency, and flexibility of the trans-ethosomes formulations were optimized. The optimum formulation was characterized, and their morphological and antifungal activity were studied. Different ophthalmic formulations loaded with the optimized vesicles were prepared and characterized. The ocular irritation and in vivo corneal permeation were investigated. Results revealed that the drug-to-phospholipid-molar ratio, the percentage of edge activator, the percentage of ethanol, and the percentage of stearyl amine significantly affect the characteristics of the vesicles. The optimized vesicles were spherical and showed an average size of 151.34 ± 8.73 nm, a zeta potential value of +34.82 ± 2.64 mV, an entrapment efficiency of 94.97 ± 5.41%, and flexibility of 95.44 ± 4.33%. The antifungal activity of KET was significantly improved following treatment with the optimized vesicles. The developed in situ gel formulations were found to be nonirritating to the cornea. The trans-ethosomes vesicles were able to penetrate deeper into the posterior eye segment without any toxic effects. Accordingly, the in situ developed gel formulation loaded with KET trans-ethosomes vesicles represents a promising ocular delivery system for the treatment of deep fungal eye infections.

Keywords: antifungal; in situ gel; ketoconazole; ocular permeation; optimization; trans-ethosomes

References

  1. Int Immunopharmacol. 2013 Sep;17(1):99-107 - PubMed
  2. Int J Nanomedicine. 2017 Mar 08;12:1863-1875 - PubMed
  3. Pharmaceutics. 2018 May 18;10(2): - PubMed
  4. AAPS PharmSciTech. 2011 Mar;12(1):62-76 - PubMed
  5. J Dermatolog Treat. 2019 Dec;30(8):760-771 - PubMed
  6. Acta Pol Pharm. 2012 Nov-Dec;69(6):1137-47 - PubMed
  7. Colloids Surf B Biointerfaces. 2012 Apr 1;92:299-304 - PubMed
  8. Ophthalmology. 1985 Dec;92(12):1701-9 - PubMed
  9. Sci Rep. 2018 Feb 5;8(1):2422 - PubMed
  10. AAPS J. 2010 Jun;12(2):202-14 - PubMed
  11. Invest Ophthalmol Vis Sci. 2013 Jun 04;54(6):3852-6 - PubMed
  12. Chem Phys Lipids. 2020 Oct;232:104953 - PubMed
  13. AAPS PharmSciTech. 2008;9(3):860-5 - PubMed
  14. Artif Cells Nanomed Biotechnol. 2018 Sep;46(6):1282-1287 - PubMed
  15. Colloids Surf B Biointerfaces. 2015 Jun 1;130:23-30 - PubMed
  16. Colloids Surf B Biointerfaces. 2014 Sep 1;121:74-81 - PubMed
  17. Drug Dev Ind Pharm. 2018 Mar;44(3):484-492 - PubMed
  18. Front Bioeng Biotechnol. 2020 Mar 20;8:228 - PubMed
  19. Clin Microbiol Rev. 2000 Oct;13(4):662-85 - PubMed
  20. Sci Pharm. 2010;78(4):959-76 - PubMed
  21. Int J Pharm. 2015 Nov 10;495(1):276-289 - PubMed
  22. J Liposome Res. 2015 Mar;25(1):1-10 - PubMed
  23. AAPS PharmSciTech. 2007 Dec 21;8(4):E111 - PubMed
  24. Iran J Pharm Res. 2013 Winter;12(Suppl):21-30 - PubMed
  25. Int J Nanomedicine. 2019 Mar 15;14:1953-1968 - PubMed
  26. Klin Monbl Augenheilkd. 1997 Apr;210(4):175-91 - PubMed
  27. Colloids Surf B Biointerfaces. 2016 Mar 1;139:190-8 - PubMed
  28. Food Chem Toxicol. 2000 Aug;38(8):727-34 - PubMed
  29. Pharm Acta Helv. 1985;60(4):110-1 - PubMed
  30. Asian J Pharm Sci. 2019 Jan;14(1):1-15 - PubMed
  31. J Pharmacol Exp Ther. 2019 Sep;370(3):814-822 - PubMed
  32. BMC Pharmacol Toxicol. 2020 Feb 21;21(1):14 - PubMed
  33. Eur J Pharm Sci. 2016 Jun 10;88:246-56 - PubMed
  34. J Pharm Sci. 1969 Oct;58(10):1253-7 - PubMed
  35. AAPS PharmSciTech. 2016 Dec;17(6):1404-1420 - PubMed
  36. Recent Pat Drug Deliv Formul. 2015;9(3):237-48 - PubMed
  37. Nanomaterials (Basel). 2018 Dec 27;9(1): - PubMed
  38. AAPS PharmSciTech. 2009;10(3):808-19 - PubMed
  39. Pharmaceutics. 2020 Sep 10;12(9): - PubMed
  40. Int J Pharm. 2005 Apr 11;293(1-2):73-82 - PubMed
  41. Int J Pharm. 2016 Mar 16;500(1-2):245-54 - PubMed
  42. Pharmaceutics. 2020 Jun 19;12(6): - PubMed
  43. AAPS J. 2010 Sep;12(3):348-60 - PubMed
  44. J Pharm Sci. 1963 Dec;52:1145-9 - PubMed
  45. Saudi Pharm J. 2019 Jul;27(5):603-611 - PubMed
  46. Int J Pharm. 2017 Jul 15;527(1-2):1-11 - PubMed

Publication Types

Grant support