Display options
Share it on

Anim Microbiome. 2019 Nov 14;1(1):15. doi: 10.1186/s42523-019-0016-0.

Occurrence and expression of genes encoding methyl-compound production in rumen bacteria.

Animal microbiome

William J Kelly, Sinead C Leahy, Janine Kamke, Priya Soni, Satoshi Koike, Roderick Mackie, Rekha Seshadri, Gregory M Cook, Sergio E Morales, Chris Greening, Graeme T Attwood

Affiliations

  1. Donvis Ltd, Palmerston North, New Zealand.
  2. AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand.
  3. Horizons Regional Council, Palmerston North, New Zealand.
  4. Hokkaido University, Sapporo, Japan.
  5. University of Illinois, Urbana, IL, USA.
  6. Department of Energy, Joint Genome Institute, San Francisco, CA, USA.
  7. University of Otago, Dunedin, New Zealand.
  8. Monash University, Melbourne, Australia.
  9. AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand. [email protected].

PMID: 33499937 PMCID: PMC7807696 DOI: 10.1186/s42523-019-0016-0

Abstract

BACKGROUND: Digestive processes in the rumen lead to the release of methyl-compounds, mainly methanol and methylamines, which are used by methyltrophic methanogens to form methane, an important agricultural greenhouse gas. Methylamines are produced from plant phosphatidylcholine degradation, by choline trimethylamine lyase, while methanol comes from demethoxylation of dietary pectins via pectin methylesterase activity. We have screened rumen metagenomic and metatranscriptomic datasets, metagenome assembled genomes, and the Hungate1000 genomes to identify organisms capable of producing methyl-compounds. We also describe the enrichment of pectin-degrading and methane-forming microbes from sheep rumen contents and the analysis of their genomes via metagenomic assembly.

RESULTS: Screens of metagenomic data using the protein domains of choline trimethylamine lyase (CutC), and activator protein (CutD) found good matches only to Olsenella umbonata and to Caecibacter, while the Hungate1000 genomes and metagenome assembled genomes from the cattle rumen found bacteria within the phyla Actinobacteria, Firmicutes and Proteobacteria. The cutC and cutD genes clustered with genes that encode structural components of bacterial microcompartment proteins. Prevotella was the dominant genus encoding pectin methyl esterases, with smaller numbers of sequences identified from other fibre-degrading rumen bacteria. Some large pectin methyl esterases (> 2100 aa) were found to be encoded in Butyrivibrio genomes. The pectin-utilising, methane-producing consortium was composed of (i) a putative pectin-degrading bacterium (phylum Tenericutes, class Mollicutes), (ii) a galacturonate-using Sphaerochaeta sp. predicted to produce acetate, lactate, and ethanol, and (iii) a methylotrophic methanogen, Methanosphaera sp., with the ability to form methane via a primary ethanol-dependent, hydrogen-independent, methanogenesis pathway.

CONCLUSIONS: The main bacteria that produce methyl-compounds have been identified in ruminants. Their enzymatic activities can now be targeted with the aim of finding ways to reduce the supply of methyl-compound substrates to methanogens, and thereby limit methylotrophic methanogenesis in the rumen.

Keywords: Bacterial; Methanol; Methyl-compound; Methylamines; Rumen

References

  1. J Mol Biol. 2007 Apr 6;367(4):1023-33 - PubMed
  2. mBio. 2015 Apr 14;6(2): - PubMed
  3. Genome Announc. 2013 Jan;1(1): - PubMed
  4. Glob Chang Biol. 2016 Dec;22(12):3859-3864 - PubMed
  5. Nucleic Acids Res. 2004 Mar 19;32(5):1792-7 - PubMed
  6. Science. 2012 Sep 28;337(6102):1661-5 - PubMed
  7. Sci Rep. 2015 Oct 09;5:14567 - PubMed
  8. PLoS One. 2010 Jan 28;5(1):e8926 - PubMed
  9. Appl Environ Microbiol. 2011 Aug 15;77(16):5671-81 - PubMed
  10. Appl Environ Microbiol. 1981 Jul;42(1):20-2 - PubMed
  11. Microbiome. 2017 May 15;5(1):54 - PubMed
  12. Biochem J. 1978 Mar 15;170(3):529-35 - PubMed
  13. Nat Biotechnol. 2018 Apr;36(4):359-367 - PubMed
  14. Biotechnol Biofuels. 2014 Oct 10;7(1):147 - PubMed
  15. Nat Rev Microbiol. 2008 Aug;6(8):579-91 - PubMed
  16. Mol Biol Evol. 2008 Jul;25(7):1307-20 - PubMed
  17. Appl Environ Microbiol. 2017 Jul 17;83(15): - PubMed
  18. mBio. 2012 May 15;3(3): - PubMed
  19. Stand Genomic Sci. 2013 May 25;8(2):215-27 - PubMed
  20. Mol Biol Evol. 1987 Jul;4(4):406-25 - PubMed
  21. Genome Res. 2014 Sep;24(9):1517-25 - PubMed
  22. Cell. 2015 Dec 17;163(7):1585-95 - PubMed
  23. Nat Commun. 2018 Feb 28;9(1):870 - PubMed
  24. Stand Genomic Sci. 2015 Jul 25;10:45 - PubMed
  25. Nucleic Acids Res. 2017 Jan 4;45(D1):D507-D516 - PubMed
  26. Front Microbiol. 2018 Aug 07;9:1582 - PubMed
  27. J Bacteriol. 2006 Jan;188(2):642-58 - PubMed
  28. Proc Natl Acad Sci U S A. 2012 Dec 26;109(52):21307-12 - PubMed
  29. PLoS One. 2009 Aug 14;4(8):e6650 - PubMed
  30. PLoS One. 2011 Apr 19;6(4):e18814 - PubMed
  31. Nat Rev Microbiol. 2018 Mar;16(3):171-181 - PubMed
  32. ISME J. 2018 Dec;12(12):2942-2953 - PubMed
  33. Lett Appl Microbiol. 2001 Aug;33(2):159-63 - PubMed
  34. Microbiome. 2016 Oct 19;4(1):56 - PubMed
  35. Nucleic Acids Res. 2018 Jan 4;46(D1):D677-D683 - PubMed
  36. Genome Res. 2017 May;27(5):824-834 - PubMed
  37. PLoS Comput Biol. 2011 Oct;7(10):e1002195 - PubMed
  38. mBio. 2015 Mar 17;6(2):e02481 - PubMed
  39. Appl Environ Microbiol. 2015 Feb;81(3):986-95 - PubMed
  40. Front Microbiol. 2015 Oct 12;6:1060 - PubMed
  41. Microb Biotechnol. 2014 Sep;7(5):467-79 - PubMed
  42. ISME J. 2016 Oct;10(10):2376-88 - PubMed
  43. Stand Genomic Sci. 2016 Feb 24;11:17 - PubMed
  44. Genome Res. 2015 Jul;25(7):1043-55 - PubMed
  45. J Microbiol Methods. 2011 Jan;84(1):52-60 - PubMed
  46. J Gen Microbiol. 1976 Feb;92(2):391-7 - PubMed
  47. Evolution. 1985 Jul;39(4):783-791 - PubMed
  48. Nature. 2011 Apr 7;472(7341):57-63 - PubMed
  49. Glob Chang Biol. 2018 Apr;24(4):1749-1761 - PubMed
  50. Br J Nutr. 1974 Sep;32(2):327-40 - PubMed
  51. Bioinformatics. 2009 Aug 15;25(16):2078-9 - PubMed
  52. Mol Biol Evol. 2016 Jul;33(7):1870-4 - PubMed
  53. Comput Appl Biosci. 1992 Jun;8(3):275-82 - PubMed
  54. PeerJ. 2015 Aug 27;3:e1165 - PubMed
  55. J Dairy Sci. 1970 Oct;53(10):1511-4 - PubMed

Publication Types

Grant support