Display options
Share it on

Energy Technol (Weinh). 2021 Jan;9(1):2000856. doi: 10.1002/ente.202000856. Epub 2020 Dec 06.

Towards a Greener and Scalable Synthesis of Na.

Energy technology (Weinheim, Germany)

Dario M De Carolis, Dragoljub Vrankovic, Samira A Kiefer, Enrico Bruder, Michael Thomas Dürrschnabel, Leopoldo Molina-Luna, Magdalena Graczyk-Zajac, Ralf Riedel

Affiliations

  1. Dispersive Solids (DF) Division, Materials Science Technical University of Darmstadt Otto-Berndt-Straße 3 Darmstadt D-64287 Germany.
  2. Present address: Mercedes-Benz AG Mercedesstraße 120 Stuttgart 70327 Germany.
  3. Physical Metallurgy Division, Materials Science Technical University of Darmstadt Alarich-Weiss-Straße 2 Darmstadt D-64287 Germany.
  4. Institute for Applied Materials - Applied Material Physics (IAM-AWP) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 Eggenstein-Leopoldshafen 76344 Germany.
  5. Advanced Electron Microscopy (AEM) Division, Materials Science Technical University of Darmstadt Alarich-Weiss-Straße 2 Darmstadt 64287 Germany.
  6. Present address: EnBW Energie Baden-Württemberg AG Durlacher Allee 93 Karlsruhe 76131 Germany.

PMID: 33520597 PMCID: PMC7816232 DOI: 10.1002/ente.202000856

Abstract

Grid applications require high power density (for frequency regulation, load leveling, and renewable energy integration), achievable by combining multiple batteries in a system without strict high capacity requirements. For these applications however, safety, cost efficiency, and the lifespan of electrode materials are crucial. Titanates, safe and longevous anode materials providing much lower energy density than graphite, are excellent candidates for this application. The innovative molten salt synthesis approach proposed in this work provides exceptionally pure Na

© 2020 The Authors. Energy Technology published by Wiley‐VCH GmbH.

Keywords: anode materials; grid storage; lithium; molten salt synthesis; sodium

Conflict of interest statement

The authors declare no conflict of interest.

References

  1. Chem Soc Rev. 2014 Apr 7;43(7):2187-99 - PubMed
  2. ACS Appl Mater Interfaces. 2017 Dec 20;9(50):43596-43602 - PubMed
  3. Chem Commun (Camb). 2013 Aug 28;49(67):7451-3 - PubMed
  4. Inorg Chem. 2008 Apr 21;47(8):3173-81 - PubMed
  5. Phys Chem Chem Phys. 2017 Apr 12;19(15):10036-10041 - PubMed
  6. Chem Soc Rev. 2017 Jun 19;46(12):3529-3614 - PubMed
  7. Chem Soc Rev. 2013 Nov 7;42(21):8237-65 - PubMed
  8. Nat Commun. 2011 Nov 01;2:516 - PubMed
  9. Small. 2016 Jun;12(22):2991-7 - PubMed
  10. Dalton Trans. 2012 Dec 28;41(48):14633-42 - PubMed
  11. Adv Sci (Weinh). 2018 Jul 01;5(9):1800519 - PubMed
  12. Inorg Chem. 2014 Aug 18;53(16):8250-6 - PubMed

Publication Types