Display options
Share it on

Sci Adv. 2021 Jan 15;7(3). doi: 10.1126/sciadv.abc4897. Print 2021 Jan.

Multiple screening approaches reveal HDAC6 as a novel regulator of glycolytic metabolism in triple-negative breast cancer.

Science advances

Catríona M Dowling, Kate E R Hollinshead, Alessandra Di Grande, Justin Pritchard, Hua Zhang, Eugene T Dillon, Kathryn Haley, Eleni Papadopoulos, Anita K Mehta, Rachel Bleach, Andreas U Lindner, Brian Mooney, Heiko Düssmann, Darran O'Connor, Jochen H M Prehn, Kieran Wynne, Michael Hemann, James E Bradner, Alec C Kimmelman, Jennifer L Guerriero, Gerard Cagney, Kwok-Kin Wong, Anthony G Letai, Tríona Ní Chonghaile

Affiliations

  1. Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.
  2. Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA.
  3. Department of Radiation Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA.
  4. Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA.
  5. School of Biomolecular and Biomedical Science, Conway Institute of Biomedical and Biomolecular Sciences, University College Dublin, Dublin, Ireland.
  6. Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
  7. Department of Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.
  8. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA.
  9. Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland. [email protected].

PMID: 33523897 PMCID: PMC7810372 DOI: 10.1126/sciadv.abc4897

Abstract

Triple-negative breast cancer (TNBC) is a subtype of breast cancer without a targeted form of therapy. Unfortunately, up to 70% of patients with TNBC develop resistance to treatment. A known contributor to chemoresistance is dysfunctional mitochondrial apoptosis signaling. We set up a phenotypic small-molecule screen to reveal vulnerabilities in TNBC cells that were independent of mitochondrial apoptosis. Using a functional genetic approach, we identified that a "hit" compound, BAS-2, had a potentially similar mechanism of action to histone deacetylase inhibitors (HDAC). An in vitro HDAC inhibitor assay confirmed that the compound selectively inhibited HDAC6. Using state-of-the-art acetylome mass spectrometry, we identified glycolytic substrates of HDAC6 in TNBC cells. We confirmed that inhibition or knockout of HDAC6 reduced glycolytic metabolism both in vitro and in vivo. Through a series of unbiased screening approaches, we have identified a previously unidentified role for HDAC6 in regulating glycolytic metabolism.

Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY).

References

  1. Mol Cell. 2014 Jul 17;55(2):253-63 - PubMed
  2. Cell Metab. 2016 Mar 8;23(3):517-28 - PubMed
  3. Mol Endocrinol. 2009 Mar;23(3):388-401 - PubMed
  4. Biochemistry. 1994 Oct 11;33(40):12291-7 - PubMed
  5. Chem Biol. 2008 Mar;15(3):234-45 - PubMed
  6. Science. 1956 Aug 10;124(3215):269-70 - PubMed
  7. Cancer Discov. 2014 Feb;4(2):232-45 - PubMed
  8. J Clin Oncol. 2008 Mar 10;26(8):1275-81 - PubMed
  9. Eur J Med Chem. 2018 Jan 1;143:1406-1418 - PubMed
  10. J Mass Spectrom. 1996 Mar;31(3):255-62 - PubMed
  11. Genes Dev. 2001 Jan 1;15(1):50-65 - PubMed
  12. Science. 2011 Nov 25;334(6059):1129-33 - PubMed
  13. Bioinformatics. 2009 Apr 15;25(8):1091-3 - PubMed
  14. Cancer Discov. 2020 Feb;10(2):270-287 - PubMed
  15. Biochim Biophys Acta. 2014 Jun;1840(6):1943-57 - PubMed
  16. Science. 2014 Jan 3;343(6166):84-87 - PubMed
  17. Nature. 2011 Nov 20;481(7381):380-4 - PubMed
  18. Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13425-30 - PubMed
  19. Breast Cancer Res. 2014 Sep 11;16(5):434 - PubMed
  20. J Biol Chem. 2012 Feb 3;287(6):3850-8 - PubMed
  21. Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1511-6 - PubMed
  22. Nat Rev Clin Oncol. 2010 Dec;7(12):683-92 - PubMed
  23. J Immunother Cancer. 2019 Feb 6;7(1):33 - PubMed
  24. Bioinformatics. 2013 Mar 1;29(5):661-3 - PubMed
  25. Nature. 2000 Aug 17;406(6797):747-52 - PubMed
  26. Nature. 2012 Oct 4;490(7418):61-70 - PubMed
  27. Nat Rev Clin Oncol. 2016 Nov;13(11):674-690 - PubMed
  28. Sci Transl Med. 2019 Sep 11;11(509): - PubMed
  29. Science. 2009 Aug 14;325(5942):834-40 - PubMed
  30. Science. 2009 Sep 18;325(5947):1555-9 - PubMed
  31. J Proteome Res. 2011 Apr 1;10(4):1794-805 - PubMed
  32. Cancer Res. 2016 Mar 1;76(5):1284-96 - PubMed
  33. Trends Endocrinol Metab. 2014 Mar;25(3):138-45 - PubMed
  34. Nature. 2010 Feb 18;463(7283):899-905 - PubMed
  35. Genome Res. 2003 Nov;13(11):2498-504 - PubMed
  36. Trends Cell Biol. 2019 Jan;29(1):31-43 - PubMed
  37. Nat Chem Biol. 2011 Feb;7(2):92-100 - PubMed
  38. Nat Rev Cancer. 2013 Oct;13(10):714-26 - PubMed
  39. Nat Rev Cancer. 2008 Feb;8(2):121-32 - PubMed
  40. Oncogene. 2007 Aug 13;26(37):5468-76 - PubMed
  41. Nat Rev Genet. 2016 Sep 15;17(10):630-41 - PubMed
  42. Nucleic Acids Res. 1999 Jan 1;27(1):29-34 - PubMed
  43. Clin Exp Metastasis. 2011 Jun;28(5):479-91 - PubMed
  44. Nat Rev Cancer. 2009 Oct;9(10):691-700 - PubMed
  45. Nat Rev Drug Discov. 2011 Aug 31;10(9):671-84 - PubMed
  46. Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):13162-13167 - PubMed
  47. Mol Cell Proteomics. 2014 Sep;13(9):2513-26 - PubMed
  48. Nat Chem Biol. 2010 Mar;6(3):238-243 - PubMed
  49. Cancer Res. 2014 Jun 15;74(12):3317-31 - PubMed
  50. Nat Biotechnol. 2015 Apr;33(4):415-23 - PubMed

Publication Types

Grant support