Display options
Share it on

Sci Rep. 2021 Jan 27;11(1):2375. doi: 10.1038/s41598-021-81677-8.

Integrating gold nanoclusters, folic acid and reduced graphene oxide for nanosensing of glutathione based on "turn-off" fluorescence.

Scientific reports

Xin Yi Wong, Daniel Quesada-González, Sivakumar Manickam, Siu Yee New, Kasturi Muthoosamy, Arben Merkoçi

Affiliations

  1. Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia.
  2. Paperdrop Diagnostics, Av. de Can Domènech s/n, Eureka Building, Campus UAB, 08193, Bellaterra, Barcelona, Spain.
  3. Nanotechnology Research Group, Centre of Nanotechnology and Advanced Materials, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia.
  4. Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam.
  5. School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia.
  6. Nanotechnology Research Group, Centre of Nanotechnology and Advanced Materials, University of Nottingham Malaysia, 43500, Semenyih, Selangor, Malaysia. [email protected].
  7. Nanobioelectronics and Biosensors Group, Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, Barcelona, Spain. [email protected].
  8. The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08036, Bellaterra, Barcelona, Spain. [email protected].
  9. ICREA, Institució Catalana de Recerca i Estudis Avançats, Pg. Lluis Companys 23, 08010, Barcelona, Spain. [email protected].

PMID: 33504892 PMCID: PMC7841173 DOI: 10.1038/s41598-021-81677-8

Abstract

Glutathione (GSH) is a useful biomarker in the development, diagnosis and treatment of cancer. However, most of the reported GSH biosensors are expensive, time-consuming and often require complex sample treatment, which limit its biological applications. Herein, a nanobiosensor for the detection of GSH using folic acid-functionalized reduced graphene oxide-modified BSA gold nanoclusters (FA-rGO-BSA/AuNCs) based on the fluorescence quenching interactions is presented. Firstly, a facile and optimized protocol for the fabrication of BSA/AuNCs is developed. Functionalization of rGO with folic acid is performed using EDC/NHS cross-linking reagents, and their interaction after loading with BSA/AuNCs is demonstrated. The formation of FA-rGO, BSA/AuNCs and FA-rGO-BSA/AuNCs are confirmed by the state-of-art characterization techniques. Finally, a fluorescence turn-off sensing strategy is developed using the as-synthesized FA-rGO-BSA/AuNCs for the detection of GSH. The nanobiosensor revealed an excellent sensing performance for the detection of GSH with high sensitivity and desirable selectivity over other potential interfering species. The fluorescence quenching is linearly proportional to the concentration of GSH between 0 and 1.75 µM, with a limit of detection of 0.1 µM under the physiological pH conditions (pH 7.4). Such a sensitive nanobiosensor paves the way to fabricate a "turn-on" or "turn-off" fluorescent sensor for important biomarkers in cancer cells, presenting potential nanotheranostic applications in biological detection and clinical diagnosis.

References

  1. ACS Appl Mater Interfaces. 2015 May 6;7(17):9287-96 - PubMed
  2. J Colloid Interface Sci. 2014 Jul 15;426:293-9 - PubMed
  3. Mikrochim Acta. 2020 Oct 19;187(11):614 - PubMed
  4. Small. 2012 Jun 25;8(12):1912-9 - PubMed
  5. Analyst. 2020 Jan 21;145(2):348-363 - PubMed
  6. Small. 2010 Feb 22;6(4):537-44 - PubMed
  7. Biosens Bioelectron. 2020 May 15;156:112033 - PubMed
  8. Mol Aspects Med. 2009 Feb-Apr;30(1-2):1-12 - PubMed
  9. Antioxidants (Basel). 2018 Apr 27;7(5): - PubMed
  10. Phys Chem Chem Phys. 2015 Sep 14;17(34):21935-41 - PubMed
  11. Clin Biochem Rev. 2008 Aug;29 Suppl 1:S49-52 - PubMed
  12. Biomarkers. 2012 Dec;17(8):671-91 - PubMed
  13. Biosens Bioelectron. 2017 Apr 15;90:69-74 - PubMed
  14. Int J Nanomedicine. 2019 Jul 03;14:4781-4800 - PubMed
  15. Biol Psychiatry. 2015 Nov 15;78(10):702-10 - PubMed
  16. Angew Chem Int Ed Engl. 2018 Aug 6;57(32):10257-10262 - PubMed
  17. Chem Soc Rev. 2018 Jul 2;47(13):4697-4709 - PubMed
  18. Small. 2019 Dec;15(51):e1903895 - PubMed
  19. J Control Release. 2018 Jul 28;282:62-75 - PubMed
  20. Chem Commun (Camb). 2020 Sep 29;56(77):11485-11488 - PubMed
  21. Anal Chem. 2013 Feb 19;85(4):2529-35 - PubMed
  22. Food Chem. 2011 Dec 1;129(3):1148-55 - PubMed
  23. ACS Appl Mater Interfaces. 2018 Mar 14;10(10):8947-8954 - PubMed
  24. Nutrients. 2019 Aug 16;11(8): - PubMed
  25. Nano Res. 2008;1(3):203-212 - PubMed
  26. Int J Nanomedicine. 2015 Feb 20;10:1505-19 - PubMed
  27. Angew Chem Int Ed Engl. 2016 Apr 25;55(18):5477-82 - PubMed
  28. J Chromatogr B Analyt Technol Biomed Life Sci. 2016 Apr 15;1019:21-8 - PubMed
  29. J Lumin. 2015 Dec 1;168:62-68 - PubMed
  30. J Mater Chem B. 2020 Apr 29;8(16):3542-3549 - PubMed
  31. Chem Soc Rev. 2015 Dec 7;44(23):8636-63 - PubMed
  32. Int J Mol Sci. 2018 Jun 26;19(7): - PubMed
  33. Nanoscale. 2016 Aug 25;8(34):15604-10 - PubMed
  34. J Midwifery Womens Health. 2016 Sep;61(5):673-674 - PubMed
  35. Chem Commun (Camb). 2015 Aug 18;51(64):12748-51 - PubMed
  36. Biosens Bioelectron. 2017 Mar 15;89(Pt 2):886-898 - PubMed
  37. Biosens Bioelectron. 2018 Jul 30;112:93-99 - PubMed
  38. Food Chem. 2016 Jul 1;202:426-31 - PubMed
  39. J Photochem Photobiol B. 2013 Mar 5;120:156-62 - PubMed
  40. Small. 2013 Nov 11;9(21):3593-601 - PubMed
  41. ACS Nano. 2020 Mar 24;14(3):2585-2627 - PubMed
  42. Biosens Bioelectron. 2020 Mar 1;151:111983 - PubMed
  43. Luminescence. 2014 Nov;29(7):722-7 - PubMed
  44. Eur J Pharm Sci. 2017 Jan 1;96:351-361 - PubMed
  45. Free Radic Res. 2010 May;44(5):479-96 - PubMed
  46. Small. 2019 Dec;15(51):e1904870 - PubMed
  47. Small. 2020 Jan;16(3):e1902242 - PubMed
  48. Langmuir. 2012 Feb 28;28(8):3945-51 - PubMed
  49. PLoS One. 2016 Apr 21;11(4):e0153495 - PubMed
  50. Talanta. 2020 Mar 1;209:120524 - PubMed
  51. Anal Chem. 2019 May 7;91(9):6141-6148 - PubMed
  52. Talanta. 2020 Jul 1;214:120886 - PubMed
  53. Int J Anal Chem. 2018 Dec 2;2018:1979684 - PubMed
  54. Molecules. 2017 Dec 25;23(1): - PubMed
  55. ACS Omega. 2020 Aug 31;5(36):22702-22707 - PubMed
  56. Sci Rep. 2016 Sep 06;6:32808 - PubMed
  57. Biomed Pharmacother. 2019 Feb;110:906-917 - PubMed
  58. Phys Chem Chem Phys. 2017 Mar 8;19(10):7228-7235 - PubMed
  59. Nanoscale. 2016 May 5;8(18):9614-20 - PubMed
  60. ACS Appl Mater Interfaces. 2013 Jun 12;5(11):4760-8 - PubMed
  61. ACS Nano. 2012 Apr 24;6(4):2904-16 - PubMed
  62. Nanoscale. 2018 Dec 20;11(1):294-300 - PubMed
  63. Chem Soc Rev. 2019 Jul 29;48(15):4087-4117 - PubMed
  64. Biosens Bioelectron. 2020 Apr 1;153:112046 - PubMed
  65. Langmuir. 2016 Mar 22;32(11):2731-6 - PubMed
  66. Small. 2014 Dec 29;10(24):5170-7 - PubMed
  67. Small. 2020 May;16(21):e2000303 - PubMed
  68. J Am Chem Soc. 2009 Jan 28;131(3):888-9 - PubMed
  69. Biosens Bioelectron. 2018 Jan 15;99:251-258 - PubMed
  70. Talanta. 2016 Sep 1;158:118-124 - PubMed
  71. Talanta. 2017 Apr 1;165:346-350 - PubMed
  72. Nanoscale. 2019 Oct 28;11(40):18845-18853 - PubMed

Publication Types