Display options
Share it on

Pediatr Res. 2021 Oct;90(4):795-800. doi: 10.1038/s41390-020-01352-y. Epub 2021 Jan 27.

Reducing lung liquid volume in fetal lambs decreases ventricular constraint.

Pediatric research

Joseph J Smolich, Michael M H Cheung, Jonathan P Mynard

Affiliations

  1. Heart Research, Murdoch Children's Research Institute, Parkville, VIC, Australia. [email protected].
  2. Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia. [email protected].
  3. Heart Research, Murdoch Children's Research Institute, Parkville, VIC, Australia.
  4. Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.
  5. Department of Cardiology, Royal Children's Hospital, Parkville, VIC, Australia.
  6. Department of Biomedical Engineering, University of Melbourne, Parkville, VIC, Australia.

PMID: 33504958 DOI: 10.1038/s41390-020-01352-y

Abstract

BACKGROUND: This study evaluated whether an increased left ventricular (LV) pump function accompanying reduction of lung liquid volume in fetal lambs was related to increased LV preload, augmented LV contractility, or both.

METHODS: Eleven anesthetized preterm fetal lambs (gestation 128 ± 2 days) were instrumented with (1) an LV micromanometer-conductance catheter to obtain LV end-diastolic volume (EDV) and end-diastolic pressure (EDP), the maximal rate of rise of LV pressure (dP/dt

RESULTS: Reducing lung liquid volume by 16 ± 4 ml kg

CONCLUSION: These findings suggest a rise in LV pump function evident after reduction of lung liquid volume in fetal lambs was related to increased LV preload secondary to lessening of external LV constraint, without any associated rise in LV contractility.

IMPACT: This study has shown that reducing the volume of liquid filling the fetal lungs lessens the degree of external constraint on the heart. This lesser constraint permits a rise in left ventricular dimensions and thus greater cardiac filling that leads to increased left ventricular pumping performance. This study has defined a mechanism whereby a reduction in lung liquid volume results in enhanced pumping performance of the fetal heart. These findings suggest that a reduction in lung liquid volume which occurs during the birth transition contributes to increases in left ventricular dimensions and pumping performance known to occur with birth.

© 2021. The Author(s), under exclusive licence to the International Pediatric Research Foundation, Inc.

References

  1. Walker, A. M., Ritchie, B. C., Adamson, T. M. & Maloney, J. E. Effect of changing lung liquid volume on the pulmonary circulation of fetal lambs. J. Appl. Physiol. (1985) 64, 61–67 (1988). - PubMed
  2. Hooper, S. B. Role of luminal volume changes in the increase in pulmonary blood flow at birth in sheep. Exp. Physiol. 83, 833–842 (1998). - PubMed
  3. Smolich, J. J. Enhanced ventricular pump function and decreased reservoir backflow sustain rise in pulmonary blood flow after reduction of lung liquid volume in fetal lambs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 306, R273–R280 (2014). - PubMed
  4. Smolich, J. J. & Mynard, J. P. Reducing lung liquid volume increases biventricular outputs and systemic arterial blood flows despite decreased cardiac filling pressures in fetal lambs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 316, R274–R280 (2019). - PubMed
  5. Gao, Y. & Raj, J. U. Regulation of the pulmonary circulation in the fetus and newborn. Physiol. Rev. 90, 1291–1335 (2010). - PubMed
  6. Grant, D. A. & Walker, A. M. Pleural and pericardial pressures limit fetal right ventricular output. Circulation 94, 555–561 (1996). - PubMed
  7. Grant, D. A. Ventricular constraint in the fetus and newborn. Can. J. Cardiol. 15, 95–104 (1999). - PubMed
  8. Grant, D. A., Maloney, J. E., Tyberg, J. V. & Walker, A. M. Effects of external constraint on the fetal left ventricular function curve. Am. Heart J. 123, 1601–1609 (1992). - PubMed
  9. Masutani, S., Iwamoto, Y., Ishido, H. & Senzaki, H. Relationship of maximum rate of pressure rise between aorta and left ventricle in pediatric patients. Implication for ventricular-vascular interaction with the potential for noninvasive determination of left ventricular contractility. Circ. J. 73, 1698–1704 (2009). - PubMed
  10. Morimont, P. et al. Arterial dP/dt - PubMed
  11. Monge Garcia, M. I. et al. Performance comparison of ventricular and arterial dP/dt - PubMed
  12. Baan, J. et al. Continuous measurement of left ventricular volume in animals and humans by conductance catheter. Circulation 70, 812–823 (1984). - PubMed
  13. Baan, J. & Van der Velde, E. T. Sensitivity of left ventricular end-systolic pressure-volume relation to type of loading intervention in dogs. Circ. Res. 62, 1247–1258 (1988). - PubMed
  14. Burkhoff, D., Mirsky, I. & Suga, H. Assessment of systolic and diastolic ventricular properties via pressure-volume analysis: a guide for clinical, translational, and basic researchers. Am. J. Physiol. Heart Circ. Physiol. 289, H501–H512 (2005). - PubMed
  15. Smolich, J. J. & Mynard, J. P. Increased right ventricular power and ductal characteristic impedance underpin higher pulmonary arterial blood flow after betamethasone therapy in fetal lambs. Pediatr. Res. 84, 558–563 (2018). - PubMed
  16. Steendijk, P., Staal, E., Jukema, J. W. & Baan, J. Hypertonic saline method accurately determines parallel conductance for dual-field conductance catheter. Am. J. Physiol. Heart Circ. Physiol. 281, H755–H763 (2001). - PubMed
  17. Mynard, J. P., Penny, D. J. & Smolich, J. J. A semi-automatic feature detection algorithm for hemodynamic signals using curvature-based feature extraction. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2007, 1691–1694 (2007). - PubMed
  18. Wo, N., Rajagopal, V., Cheung, M. M. H., Smolich, J. J. & Mynard, J. P. Assessment of single beat end-systolic elastance methods for quantifying ventricular contractility. Heart Vessels 34, 716–723 (2019). - PubMed
  19. Teitel, D. F., Dalinghaus, M., Cassidy, S. C., Payne, B. D. & Rudolph, A. M. In utero ventilation augments the left ventricular response to isoproterenol and volume loading in fetal sheep. Pediatr. Res. 29, 466–472 (1991). - PubMed
  20. Kilby, M. D., Szwarc, R., Benson, L. N. & Morrow, R. J. Left ventricular hemodynamics in anemic fetal lambs. J. Perinat. Med. 26, 5–12 (1998). - PubMed
  21. Fineman, J. R., Soifer, S. J. & Heymann, M. A. Regulation of pulmonary vascular tone in the perinatal period. Annu. Rev. Physiol. 57, 115–134 (1995). - PubMed
  22. Harding, R. & Hooper, S. B. Regulation of lung expansion and lung growth before birth. J. Appl. Physiol. (1985) 81, 209–224 (1996). - PubMed
  23. Kirkpatrick, S. E., Pitlick, P. T., Naliboff, J. & Friedman, W. F. Frank-Starling relationship as an important determinant of fetal cardiac output. Am. J. Physiol. 231, 495–500 (1976). - PubMed
  24. Lakatta, E. G. in The Heart and Cardiovascular System (eds Fozzard, HA et al.) 1325–1351(Raven Press, New York, 1992). - PubMed
  25. Berning, R. A., Klautz, R. J. & Teitel, D. F. Perinatal left ventricular performance in fetal sheep: interaction between oxygen ventilation and contractility. Pediatr. Res. 41, 57–64 (1997). - PubMed
  26. Smolich, J. J., Kenna, K. R., Esler, M. D., Phillips, S. E. & Lambert, G. W. Greater sympathoadrenal activation with longer pre-ventilation intervals after immediate cord clamping increases hemodynamic lability at birth in preterm lambs. Am. J. Physiol. Regul. Integr. Comp. Physiol. 312, R903–R911 (2017). - PubMed
  27. Crossley, K. J. et al. Dynamic changes in the direction of blood flow through the ductus arteriosus at birth. J. Physiol. 587, 4695–4704 (2009). - PubMed
  28. Galinsky, R. et al. Sustained sympathetic nervous system support of arterial blood pressure during repeated brief umbilical cord occlusions in near-term fetal sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 306, R787–R795 (2014). - PubMed
  29. Hunter, C. J., Blood, A. B. & Power, G. G. Cerebral metabolism during cord occlusion and hypoxia in the fetal sheep: a novel method of continuous measurement based on heat production. J. Physiol. 552, 241–251 (2003). - PubMed
  30. Padbury, J. F., Ludlow, J. K., Ervin, M. G., Jacobs, H. C. & Humme, J. A. Thresholds for physiological effects of plasma catecholamines in fetal sheep. Am. J. Physiol. Endocrinol. Metab. 252, E530–E537 (1987). - PubMed
  31. Lewinsky, R. M., Szwarc, R. S., Benson, L. N. & Ritchie, J. W. The effects of hypoxic acidemia on left ventricular end-systolic elastance in fetal sheep. Pediatr. Res 34, 38–43 (1993). - PubMed
  32. Su, J. B. & Crozatier, B. Preload-induced curvilinearity of left ventricular end-systolic pressure-volume relations. Effects on derived indexes in closed-chest dogs. Circulation 79, 431–440 (1989). - PubMed
  33. Teitel, D. F. et al. The end-systolic pressure-volume relationship in the newborn lamb: effects of loading and inotropic interventions. Pediatr. Res. 29, 473–482 (1991). - PubMed
  34. Pfister, R. E., Ramsden, C. A., Neil, H. L., Kyriakides, M. A. & Berger, P. J. Volume and secretion rate of lung liquid in the final days of gestation and labour in the fetal sheep. J. Physiol. 535, 889–899 (2001). - PubMed
  35. Stockx, E. M., Pfister, R. E., Kyriakides, M. A., Brodecky, V. & Berger, P. J. Expulsion of liquid from the fetal lung during labour in sheep. Respir. Physiol. Neurobiol. 157, 403–410 (2007). - PubMed
  36. Smolich, J. J., Soust, M., Berger, P. J. & Walker, A. M. Indirect relation between rises in oxygen consumption and left ventricular output at birth in lambs. Circ. Res. 71, 443–450 (1992). - PubMed
  37. Rudolph, A. M. Distribution and regulation of blood flow in the fetal and neonatal lamb. Circ. Res. 57, 811–821 (1985). - PubMed
  38. Anderson, P. A., Glick, K. L., Manring, A. & Crenshaw, C. Jr Developmental changes in cardiac contractility in fetal and postnatal sheep: in vitro and in vivo. Am. J. Physiol. Heart Circ. Physiol. 247, H371–H379 (1984). - PubMed
  39. Kirkpatrick, S. E., Covell, J. W. & Friedman, W. F. A new technique for the continuous assessment of fetal and neonatal cardiac performance. Am. J. Obstet. Gynecol. 116, 963–972 (1973). - PubMed
  40. Wladimiroff, J. W., Vosters, R. & McGhie, J. S. Normal cardiac ventricular geometry and function during the last trimester of pregnancy and early neonatal period. Br. J. Obstet. Gynaecol. 89, 839–844 (1982). - PubMed

Publication Types