Display options
Share it on

Physiol Rep. 2021 Feb;9(3):e14721. doi: 10.14814/phy2.14721.

Lower plasma PCSK9 in normocholesterolemic subjects is associated with upregulated adipose tissue surface-expression of LDLR and CD36 and NLRP3 inflammasome.

Physiological reports

Yannick Cyr, Valérie Lamantia, Simon Bissonnette, Melanie Burnette, Aurèle Besse-Patin, Annie Demers, Martin Wabitsch, Michel Chrétien, Gaétan Mayer, Jennifer L Estall, Maya Saleh, May Faraj

Affiliations

  1. Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada.
  2. Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.
  3. Montreal Diabetes Research Center (MDRC), Montréal, QC, Canada.
  4. Institut de cardiologie de Montréal (ICM), Montréal, QC, Canada.
  5. Department of Pediatrics and Adolescent Medicine, Ulm University Hospital, Ulm, Germany.
  6. Ottawa Health Research Institute (OHRI), Ottawa, ON, Canada.
  7. Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada.
  8. Department of Medicine, McGill University, Montréal, QC, Canada.
  9. Department of Life Sciences and Health, The University of Bordeaux, Bordeaux, France.

PMID: 33527668 PMCID: PMC7851436 DOI: 10.14814/phy2.14721

Abstract

BACKGROUND: LDL-cholesterol lowering variants that upregulate receptor uptake of LDL, such as in PCSK9 and HMGCR, are associated with diabetes via unclear mechanisms. Activation of the NLRP3 inflammasome/interleukin-1 beta (IL-1β) pathway promotes white adipose tissue (WAT) dysfunction and type 2 diabetes (T2D) and is regulated by LDL receptors (LDLR and CD36). We hypothesized that: (a) normocholesterolemic subjects with lower plasma PCSK9, identifying those with higher WAT surface-expression of LDLR and CD36, have higher activation of WAT NLRP3 inflammasome and T2D risk factors, and; (b) LDL upregulate adipocyte NLRP3 inflammasome and inhibit adipocyte function.

METHODOLOGY: Post hoc analysis was conducted in 27 overweight/ obese subjects with normal plasma LDL-C and measures of disposition index (DI during Botnia clamps) and postprandial fat metabolism. WAT was assessed for surface-expression of LDLR and CD36 (immunohistochemistry), protein expression (immunoblot), IL-1β secretion (AlphaLISA), and function (

RESULTS: Compared to subjects with higher than median plasma PCSK9, subjects with lower PCSK9 had higher WAT surface-expression of LDLR (+81%) and CD36 (+36%), WAT IL-1β secretion (+284%), plasma IL-1 receptor-antagonist (+85%), and postprandial hypertriglyceridemia, and lower WAT pro-IL-1β protein (-66%), WAT function (-62%), and DI (-28%), without group-differences in body composition, energy intake or expenditure. Adjusting for WAT LDLR or CD36 eliminated group-differences in WAT function, DI, and postprandial hypertriglyceridemia. Native LDL inhibited Simpson-Golabi Behmel-syndrome (SGBS) adipocyte differentiation and function and increased inflammation.

CONCLUSION: Normocholesterolemic subjects with lower plasma PCSK9 and higher WAT surface-expression of LDLR and CD36 have higher WAT NLRP3 inflammasome activation and T2D risk factors. This may be due to LDL-induced inhibition of adipocyte function.

© 2021 The Authors. Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.

Keywords: adipose tissue and systemic inflammation; apoB-lipoproteins; cardiometabolic risk; plasma apoB-to-PCSK9

References

  1. Arner, E., Westermark, P. O., Spalding, K. L., Britton, T., Ryden, M., Frisen, J., Bernard, S., & Arner, P. (2010). Adipocyte turnover: Relevance to human adipose tissue morphology. Diabetes, 59, 105-109. - PubMed
  2. Bissonnette, S., Lamantia, V., Cyr, Y., Provost, V., Devaux, M., & Faraj, M. (2018). Native LDL are priming signals for the NLRP3 inflammasome in human white adipose tissue. International Symposium on Atherosclerosis.Atherosclerosis Supplements. - PubMed
  3. Bissonnette, S., Saint-Pierre, N., Lamantia, V., Cyr, Y., Wassef, H., & Faraj, M. (2015). Plasma IL-1Ra: linking hyperapoB to risk factors for type 2 diabetes independent of obesity in humans. Nutr Diabetes, 5, e180. - PubMed
  4. Bissonnette, S., Saint-Pierre, N., Lamantia, V., Leroux, C., Provost, V., Cyr, Y., Rabasa-Lhoret, R., & Faraj, M. (2018). High plasma apolipoprotein B identifies obese subjects who best ameliorate white adipose tissue dysfunction and glucose-induced hyperinsulinemia after a hypocaloric diet. The American Journal of Clinical Nutrition, 108, 62-76. - PubMed
  5. Bissonnette, S., Salem, H., Wassef, H., Saint-Pierre, N., Tardif, A., Baass, A., Dufour, R., & Faraj, M. (2013). Low density lipoprotein delays clearance of triglyceride-rich lipoprotein by human subcutaneous adipose tissue. Journal of Lipid Research, 54, 1466-1476. - PubMed
  6. Calvo, D., Gómez-Coronado, D., Suárez, Y., Lasunción, M. A., & Vega, M. A. (1998). Human CD36 is a high affinity receptor for the native lipoproteins HDL, LDL, and VLDL. Journal of Lipid Research, 39, 777-788. - PubMed
  7. Cavelti-Weder, C., Babians-Brunner, A., Keller, C., Stahel, M. A., Kurz-Levin, M., Zayed, H., Solinger, A. M., Mandrup-Poulsen, T., Dinarello, C. A., & Donath, M. Y. (2012). Effects of gevokizumab on glycemia and inflammatory markers in type 2 diabetes. Diabetes Care, 35, 1654-1662. - PubMed
  8. Connelly, P. W., Poapst, M., Davignon, J., Lussier-Cacan, S., Reeder, B., Lessard, R., Hegele, R. A., & Csima, A. (1999). Reference values of plasma apolipoproteins A-I and B, and association with nonlipid risk factors in the populations of two Canadian provinces: Quebec and Saskatchewan. Canadian Heart Health Surveys Research Group. Canadian Journal of Cardiology, 15, 409-418. - PubMed
  9. Corrao, G., Ibrahim, B., Nicotra, F., Soranna, D., Merlino, L., Catapano, A. L., Tragni, E., Casula, M., Grassi, G., & Mancia, G. (2014). Statins and the risk of diabetes: Evidence from a large population-based cohort study. Diabetes Care, 37, 2225-2232. - PubMed
  10. Cyr, Y., Bissonnette, S., Lamantia, V., Wassef, H., Loizon, E., NGO Sock, E. T., Vidal, H., Mayer, G., Chretien, M., & Faraj, M. (2020). White adipose tissue surface expression of LDLR and CD36 is associated with risk factors for type 2 diabetes in adults with obesity. Obesity (Silver Spring), 28, 2357-2367. - PubMed
  11. Cyr, Y., Wassef, H., Bissonnette, S., Lamantia, V., Davignon, J., & Faraj, M. (2016). White adipose tissue apoC-I secretion; role in delayed chylomicron clearance in vivo and ex vivo in white adipose tissue in obese subjects. Journal of Lipid Research, 57, 1074-1085. - PubMed
  12. Demers, A., Samami, S., Lauzier, B., Des rosiers, C., Sock, E. T. N., Ong, H., & Mayer, G. (2015). PCSK9 induces CD36 degradation and affects long-chain fatty acid uptake and triglyceride metabolism in adipocytes and in mouse liver. Arteriosclerosis, Thrombosis, and Vascular Biology, 35, 2517-2525. - PubMed
  13. Dubuc, G., Chamberland, A., Wassef, H., Davignon, J., Seidah, N. G., Bernier, L., & Prat, A. (2004). Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 1454-1459. - PubMed
  14. Faraj, M. (2020). LDL, LDL receptors, and PCSK9 as modulators of the risk for type 2 diabetes: a focus on white adipose tissue. J Biomed Res, 34, 251-259. - PubMed
  15. Faraj, M., Sniderman, A., & Cianflone, K. (2004). ASP enhances in situ lipoprotein lipase activity by increasing fatty acid trapping in adipocytes. Journal of Lipid Research, 45, 657-666. - PubMed
  16. Ference, B. A., Robinson, J. G., Brook, R. D., Catapano, A. L., Chapman, M. J., Neff, D. R., Voros, S., Giugliano, R. P., Davey Smith, G., Fazio, S., & Sabatine, M. S. (2016). Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. New England Journal of Medicine, 375, 2144-2153. - PubMed
  17. Fischer-Posovszky, P., Newell, F. S., Wabitsch, M., & Tornqvist, H. E. (2008). Human SGBS cells - a unique tool for studies of human fat cell biology. Obesity Facts, 1, 184-189. - PubMed
  18. Gastaldelli, A., Gaggini, M., & Defronzo, R. A. (2017). Role of adipose tissue insulin resistance in the natural history of T2DM: Results from the San Antonio metabolism study. Diabetes, 66(4), 815-822. - PubMed
  19. Glatz, J. F. C., & Luiken, J. J. F. P. (2018). Dynamic role of the transmembrane glycoprotein CD36 (SR-B2) in cellular fatty acid uptake and utilization. Journal of Lipid Research, 59(7), 1084-1093. https://doi.org/10.1194/jlr.R082933 - PubMed
  20. Hamm, J. K., Park, B. H., & Farmer, S. R. (2001). A role for C/EBPbeta in regulating peroxisome proliferator-activated receptor gamma activity during adipogenesis in 3T3-L1 preadipocytes. Journal of Biological Chemistry, 276, 18464-18471. - PubMed
  21. Koenen, T. B., Stienstra, R., van Tits, L. J., Joosten, L. A. B., van Velzen, J. F., Hijmans, A., Pol, J. A., van der Vliet, J. A., Netea, M. G., Tack, C. J., Stalenhoef, A. F. H., & de Graaf, J. (2011). The inflammasome and caspase-1 activation: A new mechanism underlying increased inflammatory activity in human visceral adipose tissue. Endocrinology, 152(10), 3769-3778. - PubMed
  22. Lamantia, V., Bissonnette, S., Provost, V., Devaux, M., Cyr, Y., Daneault, C., Rosiers, C. D., & Faraj, M. (2019). The association of polyunsaturated fatty acid delta-5-desaturase activity with risk factors for type 2 Diabetes Is Dependent On Plasma ApoB-lipoproteins in overweight and obese adults. Journal of Nutrition, 149, 57-67. - PubMed
  23. Lamantia, V., Bissonnette, S., Wassef, H., Cyr, Y., Baass, A., Dufour, R., Rabasa-Lhoret, R., & Faraj, M. (2017). ApoB-lipoproteins and dysfunctional white adipose tissue; Relation to risk factors for type 2 diabetes in humans. Journal of Clinical Lipidology, 11, 34-45. - PubMed
  24. Larsen, C. M., Faulenbach, M., Vaag, A., Volund, A., Ehses, J. A., Seifert, B., Mandrup-Poulsen, T., & Donath, M. Y. (2007). Interleukin-1B receptor antagonist in type 2 diabetes mellitus. New England Journal of Medicine, 356, 1517-1526. - PubMed
  25. Lefterova, M. I., Zhang, Y., Steger, D. J., Schupp, M., Schug, J., Cristancho, A., Feng, D., Zhuo, D., Stoeckert Jr, C. J., Liu, X. S., & Lazar, M. A. (2008). PPARgamma and C/EBP factors orchestrate adipocyte biology via adjacent binding on a genome-wide scale. Genes & Development, 22, 2941-2952. - PubMed
  26. Lorenzo, C., Wagenknecht, L. E., Rewers, M. J., Karter, A. J., Bergman, R. N., Hanley, A. J. G., & Haffner, S. M. (2010). Disposition index, glucose effectiveness, and conversion to type 2 diabetes: The Insulin Resistance Atherosclerosis Study (IRAS). Diabetes Care, 33, 2098-2103. - PubMed
  27. Lotta, L. A., Sharp, S. J., Burgess, S., Perry, J. R. B., Stewart, I. D., Willems, S. M., Luan, J. A., Ardanaz, E., Arriola, L., Balkau, B., Boeing, H., Deloukas, P., Forouhi, N. G., Franks, P. W., Grioni, S., Kaaks, R., Key, T. J., Navarro, C., Nilsson, P. M., … Wareham, N. J. (2016). Association between LDL-cholesterol lowering genetic variants and risk of type 2 diabetes. JAMA, 316, 1383-1391. - PubMed
  28. Mascitelli, L., & Goldstein, M. R. (2018). Questioning the safety and benefits of evolocumab. The Lancet Diabetes & Endocrinology, 6, 11. - PubMed
  29. Medina-Gomez, G., Gray, S., & Vidal-Puig, A. (2007). Adipogenesis and lipotoxicity: role of peroxisome proliferator-activated receptor gamma (PPARgamma) and PPARgammacoactivator-1 (PGC1). Public Health Nutrition, 10, 1132-1137. - PubMed
  30. Murphy, R. M., & Lamb, G. D. (2013). Important considerations for protein analyses using antibody based techniques: down-sizing Western blotting up-sizes outcomes. Journal of Physiology, 591, 5823-5831. - PubMed
  31. Preiss, D., & Sattar, N. (2015). Does the LDL receptor play a role in the risk of developing type 2 diabetes? JAMA, 313, 1016-1017. - PubMed
  32. Rampanelli, E., Orso, E., Ochodnicky, P., Liebisch, G., Bakker, P. J., Claessen, N., Butter, L. M., van den Bergh Weerman, M. A., Florquin, S., Schmitz, G., & Leemans, J. C. (2017). Metabolic injury-induced NLRP3 inflammasome activation dampens phospholipid degradation. Scientific Reports, 7, 2861. - PubMed
  33. Ray, K. K., Colhoun, H. M., Szarek, M., Baccara-Dinet, M., Bhatt, D. L., Bittner, V. A., Budaj, A. J., Diaz, R., Goodman, S. G., Hanotin, C., Harrington, R. A., Jukema, J. W., Loizeau, V., Lopes, R. D., Moryusef, A., Murin, J., Pordy, R., Ristic, A. D., Roe, M. T., … INVESTIGATORS. (2019). Effects of alirocumab on cardiovascular and metabolic outcomes after acute coronary syndrome in patients with or without diabetes: a prespecified analysis of the ODYSSEY OUTCOMES randomised controlled trial. Lancet Diabetes Endocrinol, 7, 618-628. - PubMed
  34. Ridker, P. M., Pradhan, A., Macfadyen, J., Libby, P., & Glynn, R. J. (2012). Cardiovascular benefits and diabetes risks of statin therapy in primary prevention: An analysis from the JUPITER trial. The Lancet, 380, 565-571. - PubMed
  35. Sabatine, M. S., Leiter, L. A., Wiviott, S. D., Giugliano, R. P., Deedwania, P., de Ferrari, G. M., Murphy, S. A., Kuder, J. F., Gouni-Berthold, I., Lewis, B. S., Handelsman, Y., Pineda, A. L., Honarpour, N., Keech, A. C., Sever, P. S., & Pedersen, T. R. (2017). Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycaemia and risk of new-onset diabetes: a prespecified analysis of the FOURIER randomised controlled trial. The Lancet Diabetes & Endocrinology, 5, 941-950. - PubMed
  36. Sattar, N., Preiss, D., Murray, H. M., Welsh, P., Buckley, B. M., de Craen, A. J. M., Seshasai, S. R. K., McMurray, J. J., Freeman, D. J., Jukema, J. W., Macfarlane, P. W., Packard, C. J., Stott, D. J., Westendorp, R. G., Shepherd, J., Davis, B. R., Pressel, S. L., Marchioli, R., Marfisi, R. M., … Ford, I. (2010). Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. The Lancet, 375, 735-742. - PubMed
  37. Sauer, S., (2015). Ligands for the nuclear peroxisome proliferator-activated receptor gamma. Trends in Pharmacological Sciences, 36, 688-704. - PubMed
  38. Schmidt, A. F., Swerdlow, D. I., Holmes, M. V., Patel, R. S., Fairhurst-Hunter, Z., Lyall, D. M., Hartwig, F. P., Horta, B. L., Hyppönen, E., Power, C., Moldovan, M., van Iperen, E., Hovingh, G. K., Demuth, I., Norman, K., Steinhagen-Thiessen, E., Demuth, J., Bertram, L., Liu, T., … Völker, U. et al (2016). PCSK9 genetic variants and risk of type 2 diabetes: A mendelian randomisation study. The Lancet Diabetes & Endocrinology, 5, 97-105. - PubMed
  39. Schmidt, R. J., Beyer, T. P., Bensch, W. R., Qian, Y. W., Lin, A., Kowala, M., Alborn, W. E., Konrad, R. J., & Cao, G. (2008). Secreted proprotein convertase subtilisin/kexin type 9 reduces both hepatic and extrahepatic low-density lipoprotein receptors in vivo. Biochemical and Biophysical Research Communications, 370, 634-640. - PubMed
  40. Sheedy, F. J., Grebe, A., Rayner, K. J., Kalantari, P., Ramkhelawon, B., Carpenter, S. B., Becker, C. E., Ediriweera, H. N., Mullick, A. E., Golenbock, D. T., Stuart, L. M., Latz, E., Fitzgerald, K. A., & Moore, K. J. (2013). CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nature Immunology, 14, 812-820. - PubMed
  41. Skeldon, A. M., Faraj, M., & Saleh, M. (2014). Caspases and inflammasomes in metabolic inflammation. Immunology and Cell Biology, 92, 304-313. - PubMed
  42. Sloan-Lancaster, J., Abu-Raddad, E., Polzer, J., Miller, J. W., Scherer, J. C., de Gaetano, A., Berg, J. K., & Landschulz, W. H. (2013). Double-blind, randomized study evaluating the glycemic and anti-inflammatory effects of subcutaneous LY2189102, a neutralizing IL-1β antibody, in patients with type 2 diabetes. Diabetes Care, 36, 2239-2246. - PubMed
  43. Stienstra, R., Joosten, L. A. B., Koenen, T., van Tits, B., van Diepen, J. A., van den Berg, S. A. A., Rensen, P. C. N., Voshol, P. J., Fantuzzi, G., Hijmans, A., Kersten, S., Müller, M., van den Berg, W. B., van Rooijen, N., Wabitsch, M., Kullberg, B. J., van der Meer, J. W. M., Kanneganti, T., Tack, C. J., & Netea, M. G. (2010). The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metabolism, 12, 593-605. - PubMed
  44. Swanson, K. V., Deng, M., & Ting, J. P. (2019). The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nature Reviews Immunology, 19, 477-489. - PubMed
  45. Swerdlow, D. I., Preiss, D., Kuchenbaecker, K. B., Holmes, M. V., Engmann, J. E. L., Shah, T., Sofat, R., Stender, S., Johnson, P. C. D., Scott, R. A., Leusink, M., Verweij, N., Sharp, S. J., Guo, Y., Giambartolomei, C., Chung, C., Peasey, A., Amuzu, A., Li, K., …, Delaney, J. A. et al (2015). HMG-coenzyme A reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials. The Lancet, 385, 351-361. - PubMed
  46. Vandanmagsar, B., Youm, Y. H., Ravussin, A., Galgani, J. E., Stadler, K., Mynatt, R. L., Ravussin, E., Stephens, J. M., & Dixit, V. D. (2011). The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nature Medicine, 17, 179-188. - PubMed
  47. Wassef, H., Bissonnette, S., Saint-Pierre, N., Lamantia, V., Cyr, Y., Chretien, M., & Faraj, M. (2015). The apoB/ PCSK9 ratio: a new index for metabolic risk in humans. Journal of Clinical Lipidology, 9, 664-675. - PubMed
  48. Wassef, H., Salem, H., Bissonnette, S., Baass, A., Dufour, R., Davignon, J., & Faraj, M. (2012). White adipose tissue-apoC-I secretion; relation to delayed plasma clearance of dietary fat in humans. Arterioscler Throm Vasc Biol, 32, 2785-2793. - PubMed
  49. Wen, H., Gris, D., Lei, Y., Jha, S., Zhang, L., Huang, M.-T.-H., Brickey, W. J., & Ting, J.-P.-Y. (2011). Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nature Immunology, 12, 408-415. - PubMed

Publication Types

Grant support