Display options
Share it on

Exp Physiol. 2021 May;106(5):1166-1180. doi: 10.1113/EP089237. Epub 2021 Mar 16.

Impact of resveratrol-mediated increase in uterine artery blood flow on fetal haemodynamics, blood pressure and oxygenation in sheep.

Experimental physiology

Tanroop Aujla, Jack R T Darby, Brahmdeep S Saini, Mitchell C Lock, Stacey L Holman, Emma L Bradshaw, Sunthara R Perumal, Steven J P McInnes, Nicolas H Voelcker, Michael D Wiese, Christopher K Macgowan, Mike Seed, Janna L Morrison

Affiliations

  1. Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
  2. Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.
  3. Early Origins of Adult Health Research Group, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.
  4. Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia.
  5. Preclinical Imaging and Research Laboratories, South Australian Health & Medical Research Institute, Adelaide, South Australia, Australia.
  6. UniSA STEM, University of South Australia, Adelaide, South Australia, Australia.
  7. Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Clayton, Victoria, Australia.
  8. Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia.

PMID: 33600040 DOI: 10.1113/EP089237

Abstract

NEW FINDINGS: What is the central question of this study? Uterine artery blood flow helps to maintain fetal oxygen and nutrient delivery. We investigated the effects of increased uterine artery blood flow mediated by resveratrol on fetal growth, haemodynamics, blood pressure regulation and oxygenation in pregnant sheep. What is the main finding and its importance? Fetuses from resveratrol-treated ewes were significantly larger and exhibited a haemodynamic profile that might promote peripheral growth. Absolute uterine artery blood flow was positively correlated with umbilical vein oxygen saturation, absolute fetal oxygen delivery and fetal growth. Increasing uterine artery blood flow with compounds such as resveratrol might have clinical significance for pregnancy conditions in which fetal growth and oxygenation are compromised.

ABSTRACT: High placental vascular resistance hinders uterine artery (UtA) blood flow and fetal substrate delivery. In the same group of animals as the present study, we have previously shown that resveratrol (RSV) increases UtA blood flow, fetal weight and oxygenation in an ovine model of human pregnancy. However, the mechanisms behind changes in growth and the effects of increases in UtA blood flow on fetal circulatory physiology have yet to be investigated. Twin-bearing ewes received s.c. vehicle (VEH, n = 5) or RSV (n = 6) delivery systems at 113 days of gestation (term = 150 days). Magnetic resonance imaging was performed at 123-124 days to quantify fetal volume, blood flow and oxygen saturation of major fetal vessels. At 128 days, i.v. infusions of sodium nitroprusside and phenylephrine were administered to study the vascular tone of the fetal descending aorta. Maternal RSV increased fetal body volume (P = 0.0075) and weight (P = 0.0358), with no change in brain volume or brain weight. There was a positive relationship between absolute UtA blood flow and umbilical vein oxygen saturation, absolute fetal oxygen delivery and combined fetal twin volume (all P ≤ 0.05). There were no differences between groups in fetal haemodynamics or blood pressure regulation except for higher blood flow to the lower body in RSV fetuses (P = 0.0170). The observed increase in fetal weight might be helpful in pregnancy conditions in which fetal growth and oxygen delivery are compromised. Further preclinical investigations on the mechanism(s) accounting for these changes and the potential to improve growth in complicated pregnancies are warranted.

© 2021 The Authors. Experimental Physiology © 2021 The Physiological Society.

Keywords: T2 oximetry; blood pressure; fetus; haemodynamics; magnetic resonance imaging; oxygenation; phase contrast; resveratrol

References

  1. Assali, N., Kirschbaum, T., & Dilts P. Jr. (1968). Effects of hyperbaric oxygen on uteroplacental and fetal circulation. Circulation Research, 22, 573-588. - PubMed
  2. Baker, P. N., Johnson, I. R., Gowland, P. A., Hykin, J., Harvey, P. R., Freeman, A., Adams, V., Worthington, B. S., & Mansfield, P. (1994). Fetal weight estimation by echo-planar magnetic resonance imaging. The Lancet, 343, 644-645. - PubMed
  3. Barry, J. S., & Anthony, R. V. (2008). The pregnant sheep as a model for human pregnancy. Theriogenology, 69, 55-67. - PubMed
  4. Biehl, D. R., Yarnell, R., Wade, J. G., & Sitar, D. (1983). The uptake of isoflurane by the foetal lamb in utero: Effect on regional blood flow. Canadian Anaesthetists’ Society Journal, 30, 581-586. - PubMed
  5. Black, S. M., Johengen, M. J., Ma, Z. D., Bristow, J., & Soifer, S. J. (1997). Ventilation and oxygenation induce endothelial nitric oxide synthase gene expression in the lungs of fetal lambs. Journal of Clinical Investigation, 100, 1448-1458. - PubMed
  6. Boyle, D. W., Lecklitner, S., & Liechty, E. A. (1996). Effect of prolonged uterine blood flow reduction on fetal growth in sheep. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 270, R246-R253. - PubMed
  7. Browne, V. A., Julian, C. G., Toledo-Jaldin, L., Cioffi-Ragan, D., Vargas, E., & Moore, L. G. (2015). Uterine artery blood flow, fetal hypoxia and fetal growth. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1663), 20140068. - PubMed
  8. Cho, S. K. S., Darby, J. R. T., Saini, B. S., Lock, M. C., Holman, S. L., Lim, J. M., Perumal, S. R., Macgowan, C. K., Morrison, J. L., & Seed, M. (2020). Feasibility of ventricular volumetry by cardiovascular MRI to assess cardiac function in the fetal sheep. The Journal of Physiology, 598, 2557-2573. - PubMed
  9. Cindrova-Davies, T. (2014). The therapeutic potential of antioxidants, ER chaperones, NO and H2S donors, and statins for treatment of preeclampsia. Frontiers in Pharmacology, 5, 119. - PubMed
  10. Danielson, L., McMillen, I. C., Dyer, J. L., & Morrison, J. L. (2005). Restriction of placental growth results in greater hypotensive response to α-adrenergic blockade in fetal sheep during late gestation. The Journal of Physiology, 563, 611-620. - PubMed
  11. Darby, J. R. T., Mohd Dollah, M. H. B., Regnault, T. R. H., Williams, M. T., & Morrison, J. L. (2019a). Systematic review: Impact of resveratrol exposure during pregnancy on maternal and fetal outcomes in animal models of human pregnancy complications-Are we ready for the clinic? Pharmacological Research, 144, 264-278. - PubMed
  12. Darby, J. R. T., Saini, B. S., Soo, J. Y., Lock, M. C., Holman, S. L., Bradshaw, E. L., McInnes, S. J. P., Voelcker, N. H., Macgowan, C. K., Seed, M., Wiese, M. D., & Morrison, J. L. (2019b). Subcutaneous maternal resveratrol treatment increases uterine artery blood flow in the pregnant ewe and increases fetal but not cardiac growth. The Journal of Physiology, 597, 5063-5077. - PubMed
  13. Duan, A. Q., Darby, J. R. T., Soo, J. Y., Lock, M. C., Zhu, M. Y., Flynn, L. V., Perumal, S. R., Macgowan, C. K., Selvanayagam, J. B., Morrison, J. L., & Seed, M. (2019). Feasibility of phase-contrast cine magnetic resonance imaging for measuring blood flow in the sheep fetus. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 317, R780-R792. - PubMed
  14. Edelstone, D. I., & Rudolph, A. M. (1979). Preferential streaming of ductus venosus blood to the brain and heart in fetal lambs. The American Journal of Physiology, 237, H724-H729. - PubMed
  15. Edwards, L. J., Simonetta, G., Owens, J. A., Robinson, J. S., & McMillen, I. C. (1999). Restriction of placental and fetal growth in sheep alters fetal blood pressure responses to angiotensin II and captopril. The Journal of Physiology, 515, 897-904. - PubMed
  16. Gardner, D. S., Powlson, A. S., & Giussani, D. A. (2001). An in vivo nitric oxide clamp to investigate the influence of nitric oxide on continuous umbilical blood flow during acute hypoxaemia in the sheep fetus. The Journal of Physiology, 537, 587-596. - PubMed
  17. Gelman, S., Fowler, K. C., & Smith, L. R. (1984). Regional blood flow during isoflurane and halothane anesthesia. Anesthesia and Analgesia, 63, 557-565. - PubMed
  18. Giussani, D. A. (2016). The fetal brain sparing response to hypoxia: Physiological mechanisms. The Journal of Physiology, 594, 1215-1230. - PubMed
  19. Giussani, D. A., Spencer, J. A. D., Moore, P. J., Bennet, L., & Hanson, M. A. (1993). Afferent and efferent components of the cardiovascular reflex responses to acute hypoxia in term fetal sheep. The Journal of Physiology, 461, 431-449. - PubMed
  20. Goplerud, J. M., & Delivoria-Papadopoulos, M. (1985). Physiology of the placenta-Gas exchange. Annals of Clinical and Laboratory Science, 15, 270-278. - PubMed
  21. Green, L. R., Bennet, L., & Hanson, M. A. (1996). The role of nitric oxide synthesis in cardiovascular responses to acute hypoxia in the late gestation sheep fetus. The Journal of Physiology, 497, 271-277. - PubMed
  22. Grundy, D. (2015). Principles and standards for reporting animal experiments in The Journal of Physiology and Experimental Physiology. The Journal of Physiology, 593, 2547-2549. - PubMed
  23. Gu, W., Jones, C. T., & Parer, J. T. (1985). Metabolic and cardiovascular effects on fetal sheep of sustained reduction of uterine blood flow. The Journal of Physiology, 368, 109-129. - PubMed
  24. Hay, W. W. (2006). Placental-fetal glucose exchange and fetal glucose metabolism. Transactions of the American Clinical and Climatological Association, 117, 321-339. - PubMed
  25. Hollis, B., Prefumo, F., Bhide, A., Rao, S., & Thilaganathan, B. (2003). First-trimester uterine artery blood flow and birth weight. Ultrasound in Obstetrics and Gynecology, 22, 373-376. - PubMed
  26. Jensen, A., Roman, C., & Rudolph, A. M. (1991). Effects of reducing uterine blood flow on fetal blood flow distribution and oxygen delivery. Journal of Developmental Physiology, 15, 309-323. - PubMed
  27. Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M., & Altman, D. G. (2010). Improving bioscience research reporting: The ARRIVE guidelines for reporting animal research. PLoS Biology, 8, e1000412. - PubMed
  28. Lang, U., Baker, R. S., Khoury, J., & Clark, K. E. (2000). Effects of chronic reduction in uterine blood flow on fetal and placental growth in the sheep. American Journal of Physiology. Regulatory Integrative and Comparative Physiology, 279, R53-R59. - PubMed
  29. Luz, Z., & Meiboom, S. (1963). Nuclear magnetic resonance study of the protolysis of trimethylammonium ion in aqueous solution-Order of the reaction with respect to solvent. The Journal of Chemical Physics, 39, 366-370. - PubMed
  30. McMillen, I. C., Adams, M. B., Ross, J. T., Coulter, C. L., Simonetta, G., Owens, J. A., Robinson, J. S., & Edwards, L. J. (2001). Fetal growth restriction: Adaptations and consequences. Reproduction, 122, 195-204. - PubMed
  31. Molina, R. D., Meschia, G., & Wilkening, R. B. (1990). Uterine blood flow, oxygen and glucose uptakes at mid-gestation in the sheep. Experimental Biology and Medicine, 195, 379-385. - PubMed
  32. Moore, L. G., Charles, S. M., & Julian, C. G. (2011). Humans at high altitude: Hypoxia and fetal growth. Respiratory Physiology and Neurobiology, 178, 181-190. - PubMed
  33. Morin, F. C., & Egan, E. A. (1992). Pulmonary hemodynamics in fetal lambs during development at normal and increased oxygen tension. Journal of Applied Physiology, 73, 213-218. - PubMed
  34. Morrison, J. L. (2008). Sheep models of intrauterine growth restriction: Fetal adaptations and consequences. Clinical and Experimental Pharmacology and Physiology, 35, 730-743. - PubMed
  35. Morrison, J. L., Berry, M. J., Botting, K. J., Darby, J. R. T., Frasch, M. G., Gatford, K. L., Giussani, D. A., Gray, C. L., Harding, R., Herrera, E. A., Kemp, M. W., Lock, M. C., McMillen, I. C., Moss, T. J., Musk, G. C., Oliver, M. H., Regnault, T. R. H., Roberts, C. T., Soo, J. Y., & Tellam, R. L. (2018). Improving pregnancy outcomes in humans through studies in sheep. American Journal of Physiology. Regulatory Integrative and Comparative Physiology, 315, R1123-R1153. - PubMed
  36. Morrison, J. L., Chien, C., Gruber, N., Rurak, D., & Riggs, W. (2001). Fetal behavioural state changes following maternal fluoxetine infusion in sheep. Developmental Brain Research, 131, 47-56. - PubMed
  37. National Health and Medical Research Council. (2013). Australian code of practice for the care and use of animals for scientific purposes (8th edn.). National Health and Medical Research Council. - PubMed
  38. Običan, S. G., Odibo, L., Tuuli, M. G., Rodriguez, A., & Odibo, A. O. (2020). Third trimester uterine artery Doppler indices as predictors of preeclampsia and neonatal small for gestational age. Journal of Maternal-Fetal & Neonatal Medicine, 33, 3484-3489. - PubMed
  39. Owens, J. A., Falconer, J., & Robinson, J. S. (1987). Effect of restriction of placental growth on oxygen delivery to and consumption by the pregnant uterus and fetus. Journal of Developmental Physiology, 9, 137-150. - PubMed
  40. Porayette, P., Madathil, S., Sun, L., Jaeggi, E., Grosse-Wortmann, L., Yoo, S. J., Hickey, E., Miller, S. P., Macgowan, C. K., & Seed, M. (2016). MRI reveals hemodynamic changes with acute maternal hyperoxygenation in human fetuses with and without congenital heart disease. Prenatal Diagnosis, 36, 274-281. - PubMed
  41. Portnoy, S., & Macgowan, C. K. (n.d.). Open-source repository of software to analyze fetal MRI oximetry data. https://doi.org/10.5281/zenodo.3358187. Available at: https://github.com/shportnoy/blood_roi_tool - PubMed
  42. Portnoy, S., Seed, M., Sled, J. G., & Macgowan, C. K. (2017). Non-invasive evaluation of blood oxygen saturation and hematocrit from T1 and T2 relaxation times: In-vitro validation in fetal blood. Magnetic Resonance in Medicine, 78, 2352-2359. - PubMed
  43. Poudel, R., Stanley, J. L., Rueda-Clausen, C. F., Andersson, I. J., Sibley, C. P., Davidge, S. T., & Baker, P. N. (2013). Effects of resveratrol in pregnancy using murine models with reduced blood supply to the uterus. PLoS One, 8, e64401. - PubMed
  44. Reinstrup, P., Ryding, E., Algotsson, L., Messeter, K., Asgeirsson, B., & Uski, T. (1995). Distribution of cerebral blood flow during anesthesia with isoflurane or halothane in humans. Anesthesiology, 82, 359-366. - PubMed
  45. Roberts, V. H. J., Pound, L. D., Thorn, S. R., Gillingham, M. B., Thornburg, K. L., Friedman, J. E., Frias, A. E., & Grove, K. L. (2014). Beneficial and cautionary outcomes of resveratrol supplementation in pregnant nonhuman primates. FASEB Journal, 28, 2466-2477. - PubMed
  46. Rosenberg, A. (2008). The IUGR newborn. Seminars in Perinatology, 32, 219-224. - PubMed
  47. Rosenfeld, C. R. (1977). Distribution of cardiac output in ovine pregnancy. The American Journal of Physiology, 232, H231-H235. - PubMed
  48. Rudolph, A. (2009). Congenital disease of the heart: Clinical-physiological considerations (3rd edn.). Wiley-Blackwell. - PubMed
  49. Rudolph, A. M., & Heymann, M. A. (1970). Circulatory changes during growth in the fetal lamb. Circulation Research, 26, 289-299. - PubMed
  50. Russell, W. M. S., & Burch, R. L. (1959). The principles of humane experimental technique. Methuen. - PubMed
  51. Saini, B. S., Darby, J. R. T., Portnoy, S., Sun, L., Amerom, J., Lock, M. C., Soo, J. Y., Holman, S. L., Perumal, S. R., Kingdom, J. C., Sled, J. G., Macgowan, C. K., Morrison, J. L., & Seed, M. (2020a). Normal human and sheep fetal vessel oxygen saturations by T2 magnetic resonance imaging. The Journal of Physiology, 598, 3259-3281. - PubMed
  52. Saini, B. S., Morrison, J. L., & Seed, M. (2020b). Gas exchange across the placenta. In (S. Lapinsky & L. Plante Eds.), Respiratory disease in pregnancy (pp. 34-56). Cambridge University Press. - PubMed
  53. Schrauben, E. M., Saini, B. S., Darby, J. R. T., Soo, J. Y., Lock, M. C., Stirrat, E., Stortz, G., Sled, J. G., Morrison, J. L., Seed, M., & Macgowan, C. K. (2019). Fetal hemodynamics and cardiac streaming assessed by 4D flow cardiovascular magnetic resonance in fetal sheep. Journal of Cardiovascular Magnetic Resonance, 21, 8. - PubMed
  54. Sun, L., Macgowan, C. K., Portnoy, S., Sled, J. G., Yoo, S. J., Grosse-Wortmann, L., Jaeggi, E., Kingdom, J., & Seed, M. (2017). New advances in fetal cardiovascular magnetic resonance imaging for quantifying the distribution of blood flow and oxygen transport: Potential applications in fetal cardiovascular disease diagnosis and therapy. Echocardiography, 34, 1799-1803. - PubMed
  55. Thulborn, K. R., Waterton, J. C., Matthews, P. M., & Radda, G. K. (1982). Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochimica et Biophysica Acta, 714, 265-270. - PubMed
  56. Varcoe, T. J., Darby, J. R. T., Gatford, K. L., Holman, S. L., Cheung, P., Berry, M. J., Wiese, M. D., & Morrison, J. L. (2019). Considerations in selecting postoperative analgesia for pregnant sheep following fetal instrumentation surgery. Animal Frontiers, 9, 60-67. - PubMed
  57. Varcoe, T. J., Darby, J. R. T., Holman, S. L., Bradshaw, E. L., Kuchel, T., Vaughan, L., Seed, M., Wiese, M. D., & Morrison, J. L. (2020). Fetal cardiovascular response to acute hypoxia during maternal anesthesia. Physiological Reports, 8, e14365. - PubMed
  58. Wilkening, R. B., Anderson, S., Martensson, L., & Meschia, G. (1982). Placental transfer as a function of uterine blood flow. American Journal of Physiology. Heart and Circulatory Physiology, 242, H429-H436. - PubMed
  59. Wilkening, R. B., Battaglia, F. C., & Meschia, G. (1985). The relationship of umbilical glucose uptake to uterine blood flow. Journal of Developmental Physiology, 7, 313-319. - PubMed
  60. Wilkening, R. B., & Meschia, G. (1983). Fetal oxygen uptake, oxygenation, and acid-base balance as a function of uterine blood flow. The American Journal of Physiology, 244, H749-H755. - PubMed
  61. Wilkening, R. B., & Meschia, G. (1991). Effect of occluding one umbilical artery on placental oxygen transport. American Journal of Physiology. Heart and Circulatory Physiology, 260, H1319-H1325. - PubMed
  62. Wilkening, R. B., & Meschia, G. (1992). Current topic: Comparative physiology of placental oxygen transport. Placenta, 13, 1-15. - PubMed
  63. Wilkening, R. B., Meschia, G., & Battaglia, F. C. (1981). 304 The relationship of placental oxygen uptake and transfer to uterine blood flow. Pediatric Research, 15, 490. - PubMed
  64. Wright, G. A., Hu, B. S., & Macovski, A. (1991). Estimating oxygen saturation of blood in vivo with MR imaging at 1.5 T. Journal of Magnetic Resonance Imaging, 1, 275-283. - PubMed
  65. Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., & Gerig, G. (2006). User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage, 31, 1116-1128. - PubMed

Publication Types

Grant support