Display options
Share it on

Endocr Connect. 2021 Feb;10(2):220-229. doi: 10.1530/EC-20-0552.

Free testosterone and cardiometabolic parameters in men: comparison of algorithms.

Endocrine connections

Stine A Holmboe, Ravi Jasuja, Brian Lawney, Lærke Priskorn, Niels Joergensen, Allan Linneberg, Tina Kold Jensen, Niels Erik Skakkebæk, Anders Juul, Anna-Maria Andersson

Affiliations

  1. Department of Growth and Reproduction, Rigshospitalet, University of Copenhagen, Blegdamsvej, Copenhagen, Denmark.
  2. The International Research Centre in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
  3. Research Program in Men's Health: Aging and Metabolism, Brigham and Womens Hospital, Harvard Medical School, Boston, Massachusetts, USA.
  4. Centre for Clinical Research and Prevention, Frederiksberg Hospital, Copenhagen, Denmark.
  5. Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
  6. Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark.

PMID: 33544092 PMCID: PMC7983478 DOI: 10.1530/EC-20-0552

Abstract

OBJECTIVE: Calculating the free testosterone level has gained increasing interest and different indirect algorithms have been suggested. The objective was to compare free androgen index (FAI), free testosterone estimated using the linear binding model (Vermeulen: cFTV) and the binding framework accounting for allosterically coupled SHBG monomers (Zakharov: cFTZ) in relation to cardiometabolic conditions.

DESIGN: A prospective cohort study including 5350 men, aged 30-70 years, participating in population-based surveys (MONICA I-III and Inter99) from 1982 to 2001 and followed until December 2012 with baseline and follow-up information on cardiometabolic parameters and vital status.

RESULTS: Using age-standardized hormone levels, FAI was higher among men with baseline cardiometabolic conditions, whereas cFTV and cFTZ levels were lower compared to men without these conditions as also seen for total testosterone. Men in highest quartiles of cFTV or cFTZ had lower risk of developing type 2 diabetes (cFTV: HR = 0.74 (0.49-1.10), cFTZ: HR = 0.59 (0.39-0.91)) than men in lowest quartile. In contrast, men with highest levels of FAI had a 74% (1.17-2.59) increased risk of developing type 2 diabetes compared to men in lowest quartile.

CONCLUSION: The association of estimated free testosterone and the studied outcomes differ depending on algorithm used. cFTV and cFTZ showed similar associations to baseline and long-term cardiometabolic parameters. In contrast, an empiric ratio, FAI, showed opposite associations to several of the examined parameters and may reflect limited clinical utility.

Keywords: follow-up study; free testosterone; metabolic syndrome; total testosterone

References

  1. Eur J Cardiovasc Prev Rehabil. 2003 Oct;10(5):377-86 - PubMed
  2. PLoS One. 2014 Jul 14;9(7):e100409 - PubMed
  3. J Clin Endocrinol Metab. 2015 Dec;100(12):4472-80 - PubMed
  4. J Clin Endocrinol Metab. 2007 Feb;92(2):405-13 - PubMed
  5. Scand J Public Health. 2011 Jul;39(7 Suppl):26-9 - PubMed
  6. Hum Reprod Update. 2008 Jan-Feb;14(1):73-82 - PubMed
  7. J Clin Endocrinol Metab. 2016 Aug;101(8):3180-90 - PubMed
  8. J Steroid Biochem Mol Biol. 2010 Aug;121(3-5):520-7 - PubMed
  9. J Clin Endocrinol Metab. 2018 Jun 1;103(6):2167-2174 - PubMed
  10. Clin Endocrinol (Oxf). 2018 Oct;89(4):459-469 - PubMed
  11. N Engl J Med. 2010 Jul 8;363(2):123-35 - PubMed
  12. Ann Clin Biochem. 2006 Sep;43(Pt 5):389-97 - PubMed
  13. J Clin Endocrinol Metab. 2007 Feb;92(2):549-55 - PubMed
  14. J Clin Endocrinol Metab. 2016 Jul;101(7):2647-57 - PubMed
  15. J Biol Chem. 2001 Sep 14;276(37):34453-7 - PubMed
  16. J Clin Endocrinol Metab. 2017 Nov 1;102(11):4292-4302 - PubMed
  17. Int J Impot Res. 2019 Mar;31(2):132-138 - PubMed
  18. Proc Natl Acad Sci U S A. 2016 Jul 26;113(30):E4423-30 - PubMed
  19. J Clin Epidemiol. 2000 Apr;53(4):427-34 - PubMed
  20. Clin Chim Acta. 2014 Nov 1;437:6-13 - PubMed
  21. Mol Cell Endocrinol. 2015 Jan 5;399:190-200 - PubMed
  22. J Clin Endocrinol Metab. 2020 Apr 1;105(4): - PubMed
  23. Nature. 2014 Apr 17;508(7496):331-9 - PubMed
  24. Chem Sci. 2018 Dec 17;10(6):1607-1618 - PubMed
  25. Int J Epidemiol. 2011 Jun;40(3):602-10 - PubMed
  26. Endocr Rev. 1989 Aug;10(3):232-74 - PubMed
  27. Endocrinology. 2021 Feb 1;162(2): - PubMed
  28. J Clin Endocrinol Metab. 2018 May 1;103(5):1715-1744 - PubMed
  29. Eur J Epidemiol. 2014 Aug;29(8):541-9 - PubMed
  30. J Clin Endocrinol Metab. 2007 Dec;92(12):4696-705 - PubMed
  31. J Clin Endocrinol Metab. 1999 Oct;84(10):3666-72 - PubMed
  32. Biochemistry. 2003 Nov 25;42(46):13735-45 - PubMed
  33. J Clin Endocrinol Metab. 2014 Sep;99(9):E1798-802 - PubMed
  34. J Steroid Biochem Mol Biol. 2019 Jun;190:207-211 - PubMed
  35. Eur J Endocrinol. 2005 Mar;152(3):471-8 - PubMed

Publication Types