Display options
Share it on

Clin Epigenetics. 2021 Feb 02;13(1):24. doi: 10.1186/s13148-021-01019-3.

DNA methylation impact on Fabry disease.

Clinical epigenetics

Teodolinda Di Risi, Roberta Vinciguerra, Mariella Cuomo, Rosa Della Monica, Eleonora Riccio, Sirio Cocozza, Massimo Imbriaco, Giovanni Duro, Antonio Pisani, Lorenzo Chiariotti

Affiliations

  1. CEINGE - Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy.
  2. Department of Public Health, University Federico II of Naples, Via S. Pansini, 5, 80131, Naples, Italy.
  3. Department of Molecular Medicine and Medical Biotechnology, University Federico II of Naples, Via S. Pansini, 5, 80131, Naples, Italy.
  4. Institute for Biomedical Research and Innovation, National Research Council of Italy (IRIB CNR), Palermo, Italy.
  5. Department of Advanced Biomedical Sciences, University Federico II of Naples, Via S. Pansini, 5, 80131, Naples, Italy.
  6. CEINGE - Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy. [email protected].
  7. Department of Molecular Medicine and Medical Biotechnology, University Federico II of Naples, Via S. Pansini, 5, 80131, Naples, Italy. [email protected].

PMID: 33531072 PMCID: PMC7852133 DOI: 10.1186/s13148-021-01019-3

Abstract

BACKGROUND: Fabry disease (FD) is a rare X-linked disease caused by mutations in GLA gene with consequent lysosomal accumulation of globotriaosylceramide (Gb3). Women with FD often show highly heterogeneous symptoms that can manifest from mild to severe phenotype.

MAIN BODY: The phenotypic variability of the clinical manifestations in heterozygous women with FD mainly depends on the degree and direction of inactivation of the X chromosome. Classical approaches to measure XCI skewness might be not sufficient to explain disease manifestation in women. In addition to unbalanced XCI, allele-specific DNA methylation at promoter of GLA gene may influence the expression levels of the mutated allele, thus impacting the onset and the outcome of FD. In this regard, analyses of DNA methylation at GLA promoter, performed by approaches allowing distinction between mutated and non-mutated allele, may be much more informative. The aim of this review is to critically evaluate recent literature articles addressing the potential role of DNA methylation in the context of FD. Although up to date relatively few works have addressed this point, reviewing all pertinent studies may help to evaluate the importance of DNA methylation analysis in FD and to develop new research and technologies aimed to predict whether the carrier females will develop symptoms.

CONCLUSIONS: Relatively few studies have addressed the complexity of DNA methylation landscape in FD that remains poorly investigated. The hope for the future is that ad hoc and ultradeep methylation analyses of GLA gene will provide epigenetic signatures able to predict whether pre-symptomatic female carriers will develop symptoms thus helping timely interventions.

References

  1. Nat Rev Genet. 2005 Aug;6(8):597-610 - PubMed
  2. Proc Natl Acad Sci U S A. 2018 Dec 18;115(51):13015-13020 - PubMed
  3. Gene. 2018 Jan 30;641:259-264 - PubMed
  4. Front Cell Dev Biol. 2019 Oct 01;7:219 - PubMed
  5. J Med Genet. 2003 Aug;40(8):e103 - PubMed
  6. Eur J Hum Genet. 2020 Dec;28(12):1662-1668 - PubMed
  7. Nat Clin Pract Neurol. 2007 Feb;3(2):95-106 - PubMed
  8. Sci Rep. 2018 Jul 4;8(1):10138 - PubMed
  9. J Genet. 2015 Dec;94(4):591-9 - PubMed
  10. AJR Am J Roentgenol. 2007 Mar;188(3):850-3 - PubMed
  11. Hum Mol Genet. 2015 Mar 15;24(6):1528-39 - PubMed
  12. J Clin Endocrinol Metab. 2006 Nov;91(11):4319-25 - PubMed
  13. Clin Genet. 2014 Oct;86(4):301-9 - PubMed
  14. Mol Genet Metab. 2012 Nov;107(3):267-75 - PubMed
  15. Radiol Med. 2012 Feb;117(1):19-28 - PubMed
  16. Sci Rep. 2018 Jul 5;8(1):10163 - PubMed
  17. Nat Biotechnol. 2020 Apr;38(4):433-438 - PubMed
  18. N Engl J Med. 2001 Jul 5;345(1):9-16 - PubMed
  19. Hum Genet. 1999 Jan;104(1):49-55 - PubMed
  20. Clin Genet. 2016 Jan;89(1):44-54 - PubMed
  21. Mol Genet Metab. 2019 Apr;126(4):460-465 - PubMed
  22. J Med Genet. 2020 Aug;57(8):542-551 - PubMed
  23. Int J Mol Sci. 2018 Nov 23;19(12): - PubMed
  24. Curr Pharm Des. 2015;21(7):849-67 - PubMed
  25. Nat Rev Mol Cell Biol. 2019 Oct;20(10):590-607 - PubMed
  26. Acta Paediatr Suppl. 2006 Apr;95(451):30-8 - PubMed
  27. Contrib Nephrol. 2001;(136):174-92 - PubMed
  28. Mol Biosyst. 2015 Jun;11(6):1543-51 - PubMed
  29. Orphanet J Rare Dis. 2010 Nov 22;5:30 - PubMed
  30. Biochem Soc Trans. 2018 Jun 19;46(3):577-586 - PubMed
  31. Handb Clin Neurol. 2015;132:231-48 - PubMed
  32. J Med Genet. 2014 Jan;51(1):1-9 - PubMed
  33. J Mol Med (Berl). 2005 Aug;83(8):647-54 - PubMed
  34. Clin Epigenetics. 2019 Oct 28;11(1):149 - PubMed
  35. Genome Res. 2011 Oct;21(10):1592-600 - PubMed
  36. J Nephrol. 2020 Jun;33(3):569-581 - PubMed
  37. Curr Pharm Des. 2013;19(33):6014-30 - PubMed
  38. Am J Hum Genet. 2004 Jul;75(1):65-74 - PubMed
  39. Eur J Hum Genet. 2014 Dec;22(12):1376-81 - PubMed
  40. Genes (Basel). 2020 Jun 04;11(6): - PubMed
  41. Cold Spring Harb Perspect Biol. 2014 May 01;6(5):a019133 - PubMed
  42. Gene. 2012 Sep 1;505(2):266-8 - PubMed
  43. JAMA. 2001 Jun 6;285(21):2743-9 - PubMed
  44. Am J Hum Genet. 2006 Jul;79(1):31-40 - PubMed
  45. Science. 2018 Sep 28;361(6409): - PubMed
  46. Am J Hum Genet. 1992 Dec;51(6):1229-39 - PubMed
  47. JAMA. 1999 Jan 20;281(3):249-54 - PubMed
  48. Mol Genet Metab Rep. 2019 Jul 24;20:100497 - PubMed
  49. Mol Genet Metab. 2018 Apr;123(4):416-427 - PubMed
  50. J Med Genet. 1996 Aug;33(8):682-8 - PubMed
  51. Mol Genet Metab. 2017 Mar;120(3):173-179 - PubMed
  52. Nat Rev Genet. 2008 Jun;9(6):465-76 - PubMed
  53. Front Oncol. 2019 Jun 11;9:489 - PubMed
  54. J Hum Genet. 2013 Aug;58(8):548-52 - PubMed
  55. Epigenetics. 2017 Jan 2;12(1):41-54 - PubMed
  56. Lancet. 2008 Oct 18;372(9647):1427-35 - PubMed
  57. Mol Genet Metab Rep. 2015 Aug 27;5:1-2 - PubMed

Publication Types