Display options
Share it on

Front Cell Dev Biol. 2021 Jan 26;9:587096. doi: 10.3389/fcell.2021.587096. eCollection 2021.

Programmed Cell Senescence in the Mouse Developing Spinal Cord and Notochord.

Frontiers in cell and developmental biology

Jorge Antolio Domínguez-Bautista, Pilar Sarah Acevo-Rodríguez, Susana Castro-Obregón

Affiliations

  1. División de Neurociencias, Instituto de Fisiología Celular, UNAM, Mexico City, Mexico.

PMID: 33575260 PMCID: PMC7870793 DOI: 10.3389/fcell.2021.587096

Abstract

Programmed cell senescence is a cellular process that seems to contribute to embryo development, in addition to cell proliferation, migration, differentiation and programmed cell death, and has been observed in evolutionary distant organisms such as mammals, amphibians, birds and fish. Programmed cell senescence is a phenotype similar to stress-induced cellular senescence, characterized by the expression of the cell cycle inhibitors p21

Copyright © 2021 Domínguez-Bautista, Acevo-Rodríguez and Castro-Obregón.

Keywords: Cdkn1a/p21CIP1/WAF; Cdkn2a/p16INK4A; endothelial cells; motoneurons; mouse development; notochord; spinal cord

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. J Neurosci. 2001 Jul 1;21(13):4752-60 - PubMed
  2. Curr Opin Cell Biol. 2018 Dec;55:74-80 - PubMed
  3. Nat Rev Neurosci. 2004 Oct;5(10):808-12 - PubMed
  4. Curr Top Dev Biol. 2013;103:101-25 - PubMed
  5. Exp Gerontol. 2005 Oct;40(10):836-8 - PubMed
  6. Nat Med. 2016 Jan;22(1):78-83 - PubMed
  7. Cell. 2011 Sep 30;147(1):223-34 - PubMed
  8. Exp Gerontol. 2005 Oct;40(10):813-9 - PubMed
  9. J Cell Biol. 2006 Sep 25;174(7):1059-69 - PubMed
  10. Anat Sci Int. 2004 Dec;79(4):191-7 - PubMed
  11. EMBO J. 2019 Sep 16;38(18):e100849 - PubMed
  12. Cell. 2013 Nov 21;155(5):1104-18 - PubMed
  13. Aging (Albany NY). 2020 Sep 29;12(18):17895-17901 - PubMed
  14. Mol Cells. 2019 Dec 31;42(12):821-827 - PubMed
  15. DNA Repair (Amst). 2016 Jun;42:63-71 - PubMed
  16. Nat Commun. 2017 Mar 06;8:14583 - PubMed
  17. Nat Protoc. 2009;4(12):1798-806 - PubMed
  18. Development. 2017 Jan 1;144(1):106-114 - PubMed
  19. Cell Death Differ. 2017 Sep;24(9):1598-1608 - PubMed
  20. Genes Dev. 2019 May 1;33(9-10):511-523 - PubMed
  21. Nat Rev Neurosci. 2005 Mar;6(3):230-40 - PubMed
  22. Development. 2014 Feb;141(3):491-501 - PubMed
  23. Trends Cell Biol. 2018 Jun;28(6):436-453 - PubMed
  24. Development. 2006 Jul;133(13):2467-76 - PubMed
  25. Science. 2008 Aug 22;321(5892):1095-100 - PubMed
  26. Trends Neurosci. 1989 Jul;12(7):252-5 - PubMed
  27. Aging (Albany NY). 2015 Nov;7(11):974-85 - PubMed
  28. Cell Res. 2018 Jul;28(7):775-778 - PubMed
  29. Cell Mol Life Sci. 2015 Aug;72(16):2989-3008 - PubMed
  30. Aging (Albany NY). 2017 Aug 2;9(8):1867-1884 - PubMed
  31. Sci Rep. 2013 Oct 14;3:2937 - PubMed
  32. Cell. 2013 Nov 21;155(5):1119-30 - PubMed
  33. Genesis. 2014 Apr;52(4):300-8 - PubMed
  34. Circ Res. 2013 Apr 26;112(9):1272-87 - PubMed
  35. J Vis Exp. 2014 Mar 01;(85): - PubMed
  36. Exp Gerontol. 2019 Dec;128:110742 - PubMed
  37. Exp Gerontol. 2003 Oct;38(10):1179-88 - PubMed
  38. Cell Death Differ. 2005 Mar;12(3):279-91 - PubMed
  39. Nat Commun. 2016 Apr 06;7:11190 - PubMed
  40. J Vis Exp. 2010 Aug 28;(42): - PubMed

Publication Types