Display options
Share it on

Oxf Open Immunol. 2020 Dec 29;2(1):iqaa007. doi: 10.1093/oxfimm/iqaa007. eCollection 2021.

T cell phenotypes in COVID-19 - a living review.

Oxford open immunology

Stephanie J Hanna, Amy S Codd, Ester Gea-Mallorqui, D Oliver Scourfield, Felix C Richter, Kristin Ladell, Mariana Borsa, Ewoud B Compeer, Owen R Moon, Sarah A E Galloway, Sandra Dimonte, Lorenzo Capitani, Freya R Shepherd, Joseph D Wilson, Lion F K Uhl, Awen M Gallimore, Anita Milicic

Affiliations

  1. Division of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, CF14 4XN, UK.
  2. Nuffield Department of Medicine, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, Oxford, OX3 7FZ, UK.
  3. Kennedy Institute of Rheumatology, NDORMS, University of Oxford, OX3 FTY, UK.
  4. Medical Sciences Division, University of Oxford, Headington, Oxford, OX3 9DU.
  5. Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK.

PMID: 33575657 PMCID: PMC7798577 DOI: 10.1093/oxfimm/iqaa007

Abstract

COVID-19 is characterized by profound lymphopenia in the peripheral blood, and the remaining T cells display altered phenotypes, characterized by a spectrum of activation and exhaustion. However, antigen-specific T cell responses are emerging as a crucial mechanism for both clearance of the virus and as the most likely route to long-lasting immune memory that would protect against re-infection. Therefore, T cell responses are also of considerable interest in vaccine development. Furthermore, persistent alterations in T cell subset composition and function post-infection have important implications for patients' long-term immune function. In this review, we examine T cell phenotypes, including those of innate T cells, in both peripheral blood and lungs, and consider how key markers of activation and exhaustion correlate with, and may be able to predict, disease severity. We focus on SARS-CoV-2-specific T cells to elucidate markers that may indicate formation of antigen-specific T cell memory. We also examine peripheral T cell phenotypes in recovery and the likelihood of long-lasting immune disruption. Finally, we discuss T cell phenotypes in the lung as important drivers of both virus clearance and tissue damage. As our knowledge of the adaptive immune response to COVID-19 rapidly evolves, it has become clear that while some areas of the T cell response have been investigated in some detail, others, such as the T cell response in children remain largely unexplored. Therefore, this review will also highlight areas where T cell phenotypes require urgent characterisation.

© The Author(s) 2020. Published by Oxford University Press.

Keywords: COVID-19; T cells; antigen-specific; lung; peripheral blood; phenotypes

References

  1. Protein Cell. 2020 Sep;11(9):680-687 - PubMed
  2. Science. 2020 Oct 2;370(6512):89-94 - PubMed
  3. Pediatr Res. 2020 Sep;88(3):340-341 - PubMed
  4. Nat Med. 2020 Sep;26(9):1428-1434 - PubMed
  5. Immunol Res. 2014 Aug;59(1-3):118-28 - PubMed
  6. Nature. 2020 Aug;584(7821):457-462 - PubMed
  7. J Immunol Res. 2019 Apr 7;2019:6491738 - PubMed
  8. Infez Med. 2020 Ahead of print Jun 1;28(2):174-184 - PubMed
  9. Front Immunol. 2020 Dec 09;11:560330 - PubMed
  10. Nat Commun. 2020 Aug 6;11(1):3924 - PubMed
  11. J Cell Mol Med. 2020 Oct;24(19):11603-11606 - PubMed
  12. Nat Med. 2020 Apr;26(4):453-455 - PubMed
  13. mBio. 2020 Sep 18;11(5): - PubMed
  14. J Immunol Res. 2018 Jul 10;2018:5081634 - PubMed
  15. Cell. 2020 Oct 1;183(1):158-168.e14 - PubMed
  16. Nat Med. 2020 Jun;26(6):842-844 - PubMed
  17. Cell. 2020 Jun 25;181(7):1489-1501.e15 - PubMed
  18. JAMA Neurol. 2017 Aug 1;74(8):961-969 - PubMed
  19. Sci Immunol. 2020 Jul 10;5(49): - PubMed
  20. Nat Med. 2020 Aug;26(8):1200-1204 - PubMed
  21. Nat Immunol. 2021 Jan;22(1):74-85 - PubMed
  22. Cell Rep Med. 2020 Aug 25;1(5):100078 - PubMed
  23. Cell Res. 2021 Mar;31(3):272-290 - PubMed
  24. Sci Immunol. 2017 Aug 4;2(14): - PubMed
  25. Diabetes Care. 2020 Nov;43(11):e170-e171 - PubMed
  26. JCI Insight. 2020 Oct 15;5(20): - PubMed
  27. Sci Immunol. 2020 Jun 26;5(48): - PubMed
  28. Nat Rev Immunol. 2008 Apr;8(4):247-58 - PubMed
  29. Nat Rev Immunol. 2020 Sep;20(9):529-536 - PubMed
  30. J Med Virol. 2020 Nov;92(11):2768-2776 - PubMed
  31. Science. 2020 Sep 4;369(6508): - PubMed
  32. Immunity. 2020 Aug 18;53(2):442-455.e4 - PubMed
  33. EBioMedicine. 2020 Jul;57:102885 - PubMed
  34. Nature. 2020 Nov;587(7833):270-274 - PubMed
  35. Nat Med. 2020 Jul;26(7):1070-1076 - PubMed
  36. Elife. 2021 Jan 05;10: - PubMed
  37. J Cell Mol Med. 2020 Nov;24(21):12457-12463 - PubMed
  38. Cell Mol Immunol. 2020 May;17(5):533-535 - PubMed
  39. J Med Virol. 2021 Feb;93(2):760-765 - PubMed
  40. Front Immunol. 2020 May 01;11:827 - PubMed
  41. J Clin Invest. 2020 Sep 1;130(9):4694-4703 - PubMed
  42. Sci Immunol. 2020 Jul 15;5(49): - PubMed
  43. Cell Rep Med. 2020 Sep 22;1(6):100081 - PubMed
  44. Nature. 2020 Aug;584(7821):463-469 - PubMed
  45. Cell Mol Immunol. 2020 Jul;17(7):771-772 - PubMed
  46. Proc Natl Acad Sci U S A. 2020 Apr 7;117(14):8094-8103 - PubMed
  47. J Exp Med. 2020 Dec 7;217(12): - PubMed
  48. Nat Biotechnol. 2020 Aug;38(8):970-979 - PubMed
  49. EBioMedicine. 2020 May;55:102763 - PubMed
  50. Cell Mol Immunol. 2020 May;17(5):541-543 - PubMed
  51. Nat Immunol. 2020 Nov;21(11):1336-1345 - PubMed
  52. Cells. 2020 Jul 22;9(8): - PubMed
  53. Science. 2020 Aug 7;369(6504):718-724 - PubMed
  54. Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20200-5 - PubMed
  55. Nat Rev Rheumatol. 2020 Aug;16(8):413-414 - PubMed
  56. Sci Immunol. 2020 Sep 28;5(51): - PubMed

Publication Types