Display options
Share it on

Cell Oncol (Dordr). 2021 Jun;44(3):611-625. doi: 10.1007/s13402-021-00588-y. Epub 2021 Feb 03.

Digoxin treatment reactivates in vivo radioactive iodide uptake and correlates with favorable clinical outcome in non-medullary thyroid cancer.

Cellular oncology (Dordrecht)

Thomas Crezee, Marika H Tesselaar, James Nagarajah, Willem E Corver, Johannes Morreau, Catrin Pritchard, Shioko Kimura, Josephina G Kuiper, Ilse van Engen-van Grunsven, Jan W A Smit, Romana T Netea-Maier, Theo S Plantinga

Affiliations

  1. Department of Pathology, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 10, Nijmegen, 6500 HB, The Netherlands. [email protected].
  2. Department of Pathology, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 10, Nijmegen, 6500 HB, The Netherlands.
  3. Department of Radiology & Nuclear Medicine, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.
  4. Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands.
  5. Department of Pathology, University of Leicester, Leicester, LEI7RH, UK.
  6. Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
  7. PHARMO Institute, Utrecht, The Netherlands.
  8. Department of Internal Medicine, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.

PMID: 33534128 PMCID: PMC8213564 DOI: 10.1007/s13402-021-00588-y

Abstract

PURPOSE: Non-medullary thyroid cancer (NMTC) treatment is based on the ability of thyroid follicular cells to accumulate radioactive iodide (RAI). However, in a subset of NMTC patients tumor dedifferentiation occurs, leading to RAI resistance. Digoxin has been demonstrated to restore iodide uptake capacity in vitro in poorly differentiated and anaplastic NMTC cells, termed redifferentiation. The aim of the present study was to investigate the in vivo effects of digoxin in TPO-Cre/LSL-Braf

METHODS: Mice with thyroid cancer were subjected to 3D ultrasound for monitoring tumor growth and

RESULTS: We found that in mice, tumor growth was inhibited and

CONCLUSIONS: These in vivo data support the hypothesis that digoxin may represent a repositioned adjunctive treatment modality that suppresses tumor growth and improves RAI sensitivity in patients with RAI-refractory NMTC.

Keywords: Autophagy; Digoxin; Non‐medullary thyroid cancer; Radioactive iodide; Redifferentiation

References

  1. Acta Oncol. 2018 Jan;57(1):120-128 - PubMed
  2. Cancer Res. 2008 Aug 15;68(16):6688-97 - PubMed
  3. Crit Rev Oncol Hematol. 2020 Jan;145:102822 - PubMed
  4. J Clin Invest. 2016 Nov 1;126(11):4119-4124 - PubMed
  5. Nat Cell Biol. 2015 Mar;17(3):288-99 - PubMed
  6. Cancer Epidemiol Biomarkers Prev. 2015 Nov;24(11):1804-7 - PubMed
  7. J Mol Endocrinol. 2017 Nov;59(4):R141-R154 - PubMed
  8. Eur J Cancer. 2010 Jan;46(2):395-404 - PubMed
  9. Clin Cancer Res. 2009 Apr 15;15(8):2583-7 - PubMed
  10. PLoS Genet. 2016 Aug 05;12(8):e1006239 - PubMed
  11. Expert Opin Ther Targets. 2007 Aug;11(8):1043-53 - PubMed
  12. Cell. 2014 Oct 23;159(3):676-90 - PubMed
  13. PLoS One. 2017 Jun 7;12(6):e0178611 - PubMed
  14. ACS Chem Biol. 2013 Dec 20;8(12):2724-2733 - PubMed
  15. Mol Cancer Ther. 2017 Jan;16(1):169-181 - PubMed
  16. J Clin Invest. 2016 Mar 1;126(3):1052-66 - PubMed
  17. Clin Transl Sci. 2012 Feb;5(1):39-42 - PubMed
  18. Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1615-20 - PubMed
  19. Proc Natl Acad Sci U S A. 2008 Dec 16;105(50):19579-86 - PubMed
  20. Front Physiol. 2013 Oct 02;4:272 - PubMed
  21. Nat Rev Cancer. 2013 Mar;13(3):184-99 - PubMed
  22. Clin Cancer Res. 2015 Mar 1;21(5):1028-35 - PubMed
  23. Cancer Res. 2009 Apr 1;69(7):2739-47 - PubMed
  24. Trends Cardiovasc Med. 2016 Oct;26(7):585-95 - PubMed
  25. Ann Oncol. 2012 Oct;23 Suppl 7:vii110-9 - PubMed
  26. J Clin Endocrinol Metab. 2019 May 1;104(5):1417-1428 - PubMed
  27. Cell Oncol. 2007;29(1):19-24 - PubMed
  28. Nat Protoc. 2012 Mar 01;7(3):562-78 - PubMed
  29. CA Cancer J Clin. 2018 Jan;68(1):7-30 - PubMed
  30. Oncotarget. 2017 Jul 4;8(27):44203-44216 - PubMed
  31. Endocr Rev. 2019 Dec 1;40(6):1573-1604 - PubMed
  32. N Engl J Med. 2016 Dec 8;375(23):2307 - PubMed
  33. Gynecol Oncol. 2016 Feb;140(2):285-8 - PubMed
  34. Oncotarget. 2017 May 23;8(21):34727-34735 - PubMed
  35. Histopathology. 2016 Sep;69(3):406-22 - PubMed
  36. J Clin Endocrinol Metab. 2006 Aug;91(8):2892-9 - PubMed
  37. Lancet. 2014 Jul 26;384(9940):319-28 - PubMed
  38. J Surg Oncol. 2014 Sep;110(4):375-82 - PubMed
  39. Biochemistry. 1988 Nov 1;27(22):8400-8 - PubMed
  40. N Engl J Med. 2015 Feb 12;372(7):621-30 - PubMed
  41. Mol Cell. 2007 Jan 26;25(2):193-205 - PubMed
  42. Autophagy. 2016 Jul 2;12(7):1195-205 - PubMed
  43. Mol Endocrinol. 2004 Nov;18(11):2817-29 - PubMed
  44. Nature. 2011 Apr 28;472(7344):486-90 - PubMed
  45. Br J Cancer. 2016 Nov 22;115(11):1289-1295 - PubMed
  46. Cancer Res. 1986 Dec;46(12 Pt 1):6059-63 - PubMed
  47. Neuron. 1990 Apr;4(4):571-82 - PubMed
  48. J Mol Diagn. 2016 Nov;18(6):851-863 - PubMed
  49. N Engl J Med. 2013 Feb 14;368(7):623-32 - PubMed
  50. Circulation. 2000 Nov 14;102(20 Suppl 4):IV69-74 - PubMed
  51. Endocr Relat Cancer. 2013 Dec 16;21(1):R13-29 - PubMed
  52. Nat Rev Drug Discov. 2008 Nov;7(11):926-35 - PubMed
  53. J Nucl Med. 2018 May;59(5):780-786 - PubMed
  54. J Biol Chem. 2015 Jul 3;290(27):16653-64 - PubMed
  55. Sci Transl Med. 2012 Jul 18;4(143):143ra99 - PubMed
  56. Circulation. 2004 Jun 22;109(24):2942-6 - PubMed
  57. Eur J Endocrinol. 2015 Sep;173(3):399-408 - PubMed

Publication Types

Grant support