Display options
Share it on

Front Neurosci. 2021 Jan 21;14:593545. doi: 10.3389/fnins.2020.593545. eCollection 2020.

Evaluation of Functional Recovery in Rats After Median Nerve Resection and Autograft Repair Using Computerized Gait Analysis.

Frontiers in neuroscience

Johannes C Heinzel, Viola Oberhauser, Claudia Keibl, Nicole Swiadek, Gregor Längle, Helen Frick, Jonas Kolbenschlag, Cosima Prahm, Johannes Grillari, David Hercher

Affiliations

  1. Department of Hand, Plastic, Reconstructive and Burn Surgery, BG Trauma Center Tuebingen, Eberhard Karls University Tuebingen, Tuebingen, Germany.
  2. Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.
  3. Austrian Cluster for Tissue Regeneration, Vienna, Austria.
  4. Department of Biotechnology, Institute of Molecular Biotechnology, BOKU-University of Natural Resources and Life Sciences Vienna, Vienna, Austria.

PMID: 33551723 PMCID: PMC7859340 DOI: 10.3389/fnins.2020.593545

Abstract

Computerized gait analysis is a common evaluation method in rat models of hind limb nerve injuries, but its use remains unpublished in models of segmental nerve injury of the forelimb. It was the aim of this work to investigate if computerized gait analysis is a feasible evaluation method in a rat model of segmental median nerve injury and autograft repair. Ten male Lewis rats underwent 7-mm resection of the right median nerve with immediate autograft repair. The left median nerve was resected without repair and served as an internal control. Animals were assessed for 12 weeks after surgery

Copyright © 2021 Heinzel, Oberhauser, Keibl, Swiadek, Längle, Frick, Kolbenschlag, Prahm, Grillari and Hercher.

Keywords: catwalk; functional recovery; gait analysis; grasping strength; median nerve; microsurgery; nerve repair; rats

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Anat Rec (Hoboken). 2014 Oct;297(10):1839-64 - PubMed
  2. Pain. 2003 Mar;102(1-2):203-9 - PubMed
  3. Microsurgery. 1993;14(5):323-7 - PubMed
  4. Front Behav Neurosci. 2018 Mar 06;12:39 - PubMed
  5. Behav Brain Res. 2005 Sep 8;163(2):143-58 - PubMed
  6. Front Neurol. 2018 Dec 04;9:1057 - PubMed
  7. Neurosurgery. 2019 Aug 1;85(2):250-256 - PubMed
  8. Neural Regen Res. 2020 Mar;15(3):491-502 - PubMed
  9. Laryngoscope. 2017 Aug;127(8):1855-1860 - PubMed
  10. Sci Rep. 2018 Feb 16;8(1):3168 - PubMed
  11. J Neurosci Methods. 2012 Apr 30;206(1):7-14 - PubMed
  12. Pain. 1992 Sep;50(3):355-363 - PubMed
  13. BMC Res Notes. 2018 Apr 27;11(1):263 - PubMed
  14. Brain Behav. 2017 Sep 06;7(10):e00813 - PubMed
  15. Ann Anat. 2011 Jul;193(4):276-85 - PubMed
  16. Neuroscientist. 2003 Jun;9(3):217-28 - PubMed
  17. J Vis Exp. 2020 Apr 18;(158): - PubMed
  18. J Peripher Nerv Syst. 2007 Mar;12(1):11-27 - PubMed
  19. J Neurotrauma. 2005 Feb;22(2):214-25 - PubMed
  20. Ann Plast Surg. 1992 Jun;28(6):538-44 - PubMed
  21. Exp Neurol. 2013 Feb;240:157-67 - PubMed
  22. Anesthesiol Res Pract. 2012;2012:921405 - PubMed
  23. J Neurosci Methods. 2004 Mar 15;134(1):75-80 - PubMed
  24. Somatosens Mot Res. 2016 Mar;33(1):20-8 - PubMed
  25. Eur Neurol. 1985;24(6):380-5 - PubMed
  26. J Neurosci Methods. 2020 Nov 1;345:108889 - PubMed
  27. Front Cell Neurosci. 2019 Jun 28;13:288 - PubMed
  28. Exp Neurol. 1997 Dec;148(2):544-57 - PubMed
  29. Exp Neurol. 2003 Oct;183(2):695-9 - PubMed
  30. J Neurotrauma. 2002 Jul;19(7):897-907 - PubMed
  31. Brain Behav. 2017 May 18;7(7):e00723 - PubMed
  32. J Neurosci Methods. 1995 May;58(1-2):151-5 - PubMed
  33. J Neurosci Methods. 2003 Jul 15;127(1):43-7 - PubMed
  34. Neurosci Res. 2004 Apr;48(4):369-77 - PubMed
  35. Physiol Behav. 2007 Dec 5;92(5):993-1001 - PubMed
  36. Microsurgery. 1995;16(2):77-85 - PubMed
  37. J Exp Orthop. 2017 Sep 29;4(1):31 - PubMed
  38. Prog Neurobiol. 2007 Jul;82(4):163-201 - PubMed
  39. J Neurosci Methods. 2007 Aug 15;164(1):120-30 - PubMed
  40. J Neurosci Methods. 2009 Apr 30;179(1):51-7 - PubMed
  41. Eur J Neurosci. 2016 Feb;43(3):271-86 - PubMed
  42. J Mater Sci Mater Med. 2018 Jul 21;29(8):120 - PubMed
  43. PLoS One. 2018 Apr 16;13(4):e0195692 - PubMed
  44. Methods Mol Biol. 2014;1162:179-88 - PubMed
  45. Acta Biomater. 2018 Jan 15;66:335-349 - PubMed
  46. Exp Neurol. 2014 May;255:1-11 - PubMed
  47. Ann Anat. 2011 Jul;193(4):321-33 - PubMed
  48. Surg Radiol Anat. 1992;14(1):85-6 - PubMed
  49. Front Neurol. 2014 Jul 07;5:116 - PubMed
  50. Neural Regen Res. 2018 Apr;13(4):704-708 - PubMed
  51. Methods Mol Biol. 2014;1084:193-226 - PubMed
  52. J Neurotrauma. 2009 Sep;26(9):1609-21 - PubMed
  53. Exp Neurol. 1982 Sep;77(3):634-43 - PubMed
  54. J Neurosci Methods. 2016 Aug 1;268:171-81 - PubMed
  55. Span J Psychol. 2015 Mar 17;18:E11 - PubMed
  56. J Chem Neuroanat. 2008 Sep;36(1):27-32 - PubMed
  57. J Neurosci Methods. 2016 Dec 1;274:125-130 - PubMed
  58. Behav Brain Res. 2011 May 16;219(1):55-62 - PubMed
  59. Synapse. 2012 Jun;66(6):561-72 - PubMed
  60. J Neurotrauma. 2001 Feb;18(2):187-201 - PubMed
  61. PLoS One. 2018 Jul 16;13(7):e0200548 - PubMed
  62. Life Sci. 2012 Feb 13;90(7-8):278-88 - PubMed
  63. Brain Behav. 2020 Apr;10(4):e01580 - PubMed
  64. Microsurgery. 2006;26(4):295-302 - PubMed
  65. J Neurosci Res. 2004 Jul 1;77(1):127-42 - PubMed
  66. Life Sci. 1979 Jul 9;25(2):171-9 - PubMed
  67. Int Rev Neurobiol. 2009;87:47-79 - PubMed
  68. Exp Brain Res. 1997 Feb;113(2):200-6 - PubMed
  69. Interdiscip Toxicol. 2013 Sep;6(3):126-35 - PubMed
  70. J Peripher Nerv Syst. 2008 Mar;13(1):92-102 - PubMed
  71. Neurol Res. 2004 Mar;26(2):186-94 - PubMed
  72. World Neurosurg. 2019 Mar;123:e488-e500 - PubMed
  73. Muscle Nerve. 2019 Oct;60(4):437-442 - PubMed
  74. Front Cell Neurosci. 2019 May 08;13:182 - PubMed

Publication Types