Display options
Share it on

Brain Res. 2021 May 01;1758:147369. doi: 10.1016/j.brainres.2021.147369. Epub 2021 Feb 12.

Cerebrovascular damage after midlife transient hypertension in non-transgenic and Alzheimer's disease rats.

Brain research

Aaron Y Lai, Illsung L Joo, Arunachala U Trivedi, Adrienne Dorr, Mary E Hill, Bojana Stefanovic, JoAnne McLaurin

Affiliations

  1. Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada. Electronic address: [email protected].
  2. Department of Medical Biophysics, University of Toronto, 1 King's College Circle, Toronto, Ontario M5G 2M9, Canada; Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada.
  3. Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada. Electronic address: [email protected].
  4. Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada.
  5. Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada. Electronic address: [email protected].
  6. Department of Medical Biophysics, University of Toronto, 1 King's College Circle, Toronto, Ontario M5G 2M9, Canada; Physical Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada. Electronic address: [email protected].
  7. Biological Sciences, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5G 2M9, Canada. Electronic address: [email protected].

PMID: 33582120 PMCID: PMC8005286 DOI: 10.1016/j.brainres.2021.147369

Abstract

Hypertension, including transient events, is a major risk factor for developing late-onset dementia and Alzheimer's disease (AD). Anti-hypertensive drugs facilitate restoration of normotension without amelioration of increased dementia risk suggesting that transient hypertensive insults cause irreversible damage. This study characterized the contribution of transient hypertension to sustained brain damage as a function of normal aging and AD. To model transient hypertension, we treated F344TgAD and non-transgenic littermate rats with L-NG-Nitroarginine methyl ester (L-NAME) for one month, ceased treatment and allowed for a month of normotensive recovery. We then examined the changes in the structure and function of the cerebrovasculature, integrity of white matter, and progression of AD pathology. As independent factors, both transient hypertension and AD compromised structural and functional integrity across the vascular bed, while combined effects of hypertension and AD yielded the largest deficits. Combined effects of transient hypertension and AD genotype resulted in loss of cortical myelin particularly in the cingulate cortex which is crucial for cognitive function. Increased cerebral amyloid angiopathy, a prominent pathology of AD, was detected after transient hypertension as were up- and down-regulation of proteins associated with cerebrovascular remodeling - osteopontin, ROCK1 and ROCK2, in F344TgAD rats even 30 days after restoration of normotension. In conclusion, transient hypertension caused permanent cerebrovasculature and brain parenchymal damage in both normal aging and AD. Our results corroborate human studies that have found close correlation between transient hypertension in midlife and white matter lesions later in life outlining vascular pathologies as pathological links to increased risk of dementia.

Copyright © 2021 The Authors. Published by Elsevier B.V. All rights reserved.

Keywords: Alzheimer’s disease; Cerebral amyloid angiopathy; F344TgAD rat; Hypertension; Myelin; Vascular reactivity

References

  1. Cardiovasc Psychiatry Neurol. 2009;2009:107286 - PubMed
  2. Eur Respir J. 2012 Sep;40(3):766-82 - PubMed
  3. Neurology. 2013 Sep 3;81(10):904-9 - PubMed
  4. Sci Rep. 2017 Apr 12;7:46427 - PubMed
  5. JAMA. 2019 Aug 13;322(6):524-534 - PubMed
  6. Chest. 2011 May;139(5):1010-1017 - PubMed
  7. Am J Physiol Heart Circ Physiol. 2013 Jun 15;304(12):H1598-614 - PubMed
  8. Neurology. 2016 Mar 15;86(11):1000-8 - PubMed
  9. Front Cell Neurosci. 2018 Feb 06;12:23 - PubMed
  10. J Neurosci. 2013 Apr 10;33(15):6245-56 - PubMed
  11. Hypertension. 2015 Jul;66(1):175-82 - PubMed
  12. JAMA. 1997 Mar 12;277(10):813-7 - PubMed
  13. Biomed Res Int. 2017;2017:4368474 - PubMed
  14. Mol Cell Biochem. 2002 Feb;231(1-2):129-37 - PubMed
  15. Nat Commun. 2016 Jun 21;7:11934 - PubMed
  16. Curr Hypertens Rep. 2017 Mar;19(3):24 - PubMed
  17. Hypertension. 2019 Jun;73(6):e87-e120 - PubMed
  18. Heart Vessels. 1993;8(1):7-15 - PubMed
  19. Nat Med. 2018 Mar;24(3):326-337 - PubMed
  20. Proc Natl Acad Sci U S A. 2009 Jan 27;106(4):1261-6 - PubMed
  21. BMJ Open. 2013 Aug 30;3(8):e003423 - PubMed
  22. Stroke. 1996 Dec;27(12):2262-70 - PubMed
  23. Sci Transl Med. 2018 Jul 4;10(448): - PubMed
  24. Neurobiol Aging. 2000 Jan-Feb;21(1):49-55 - PubMed
  25. Physiol Rev. 2009 Jul;89(3):957-89 - PubMed
  26. Ann Clin Transl Neurol. 2015 Jul;2(7):711-21 - PubMed
  27. Hypertension. 2015 Jan;65(1):218-24 - PubMed
  28. J Neurochem. 2003 Nov;87(3):780-90 - PubMed
  29. Arch Neurol. 2006 May;63(5):686-92 - PubMed
  30. Hypertension. 1996 Dec;28(6):1055-63 - PubMed
  31. Mol Med. 2008 Jul-Aug;14(7-8):383-94 - PubMed
  32. Neurology. 2013 Sep 3;81(10):896-903 - PubMed
  33. Brain. 2017 Jul 1;140(7):1829-1850 - PubMed
  34. N Engl J Med. 2010 Jan 28;362(4):329-44 - PubMed
  35. Front Neurol. 2017 Sep 04;8:408 - PubMed
  36. Neurobiol Aging. 2001 May-Jun;22(3):407-12 - PubMed
  37. JAMA Neurol. 2016 Aug 1;73(8):934-43 - PubMed
  38. Lancet Neurol. 2019 Oct;18(10):942-952 - PubMed
  39. Biochim Biophys Acta. 2002 May 21;1587(1):75-82 - PubMed
  40. Brain. 2013 Sep;136(Pt 9):2697-706 - PubMed
  41. J Alzheimers Dis. 2012;32(3):753-63 - PubMed
  42. Circ Res. 2001 Apr 27;88(8):774-9 - PubMed
  43. Cerebrovasc Dis. 2006;21(5-6):315-22 - PubMed
  44. Neurobiol Aging. 2015 Jan;36(1):27-32 - PubMed
  45. Brain. 2012 Oct;135(Pt 10):3039-50 - PubMed
  46. Front Aging Neurosci. 2018 Mar 20;10:73 - PubMed
  47. Circ Res. 2015 Feb 27;116(5):895-908 - PubMed
  48. J Neurotrauma. 2012 Jul 20;29(11):2060-74 - PubMed
  49. J Alzheimers Dis. 2019;71(1):307-316 - PubMed
  50. Neurology. 2018 Oct 9;91(15):e1402-e1412 - PubMed
  51. J Neurochem. 2018 Mar;144(5):651-658 - PubMed
  52. Acta Neuropathol. 2017 Aug;134(2):171-186 - PubMed
  53. Alzheimers Dement (N Y). 2016 Sep 20;3(1):83-91 - PubMed
  54. Brain. 2015 Apr;138(Pt 4):1046-58 - PubMed
  55. BMC Neurol. 2002 Sep 12;2:9 - PubMed
  56. Future Med Chem. 2015;7(8):1039-53 - PubMed
  57. Neurochem Res. 1997 Jan;22(1):81-6 - PubMed
  58. J Alzheimers Dis. 2010;21(3):725-39 - PubMed
  59. Lancet. 1999 Sep 11;354(9182):919-20 - PubMed
  60. Circulation. 2004 Aug 17;110(7):867-73 - PubMed
  61. J Neurochem. 2015 Sep;134(6):1129-38 - PubMed
  62. Circ Res. 2016 Jan 22;118(2):352-66 - PubMed
  63. Lab Anim Res. 2018 Dec;34(4):176-184 - PubMed
  64. Hypertension. 2012 Apr;59(4):780-6 - PubMed
  65. Cell Mol Bioeng. 2017 Apr;10(2):144-152 - PubMed
  66. Pharmacol Rev. 2015 Oct;67(4):1074-95 - PubMed
  67. Cytoskeleton (Hoboken). 2010 Sep;67(9):545-54 - PubMed
  68. Brain. 2019 Jan 1;143(1):359-373 - PubMed
  69. Hypertension. 2017 Sep;70(3):613-623 - PubMed
  70. J Cardiovasc Transl Res. 2012 Jun;5(3):264-73 - PubMed
  71. JAMA. 2019 Feb 12;321(6):553-561 - PubMed
  72. J Neurochem. 2018 Mar;144(5):659-668 - PubMed

Publication Types

Grant support