Display options
Share it on

Circulation. 2021 Apr 06;143(14):1377-1390. doi: 10.1161/CIRCULATIONAHA.120.050991. Epub 2021 Feb 08.

Ablation Versus Drug Therapy for Atrial Fibrillation in Heart Failure: Results From the CABANA Trial.

Circulation

Douglas L Packer, Jonathan P Piccini, Kristi H Monahan, Hussein R Al-Khalidi, Adam P Silverstein, Peter A Noseworthy, Jeanne E Poole, Tristram D Bahnson, Kerry L Lee, Daniel B Mark,

Affiliations

  1. Mayo Clinic Hospital, St. Marys Campus, Rochester, MN (D.L.P., K.H.M., P.A.N.).
  2. Duke Clinical Research Institute, Duke University, Durham, NC (J.P.P., H.R.A.-K., A.P.S., T.D.B., K.L.L., D.B.M.).
  3. University of Washington Medical Center, Seattle (J.E.P.).

PMID: 33554614 PMCID: PMC8030730 DOI: 10.1161/CIRCULATIONAHA.120.050991

Abstract

BACKGROUND: In patients with heart failure and atrial fibrillation (AF), several clinical trials have reported improved outcomes, including freedom from AF recurrence, quality of life, and survival, with catheter ablation. This article describes the treatment-related outcomes of the AF patients with heart failure enrolled in the CABANA trial (Catheter Ablation Versus Antiarrhythmic Drug Therapy for Atrial Fibrillation).

METHODS: The CABANA trial randomized 2204 patients with AF who were ≥65 years old or <65 years old with ≥1 risk factor for stroke at 126 sites to ablation with pulmonary vein isolation or drug therapy including rate or rhythm control drugs. Of these, 778 (35%) had New York Heart Association class >II at baseline and form the subject of this article. The CABANA trial's primary end point was a composite of death, disabling stroke, serious bleeding, or cardiac arrest.

RESULTS: Of the 778 patients with heart failure enrolled in CABANA, 378 were assigned to ablation and 400 to drug therapy. Ejection fraction at baseline was available for 571 patients (73.0%), and 9.3% of these had an ejection fraction <40%, whereas 11.7% had ejection fractions between 40% and 50%. In the intention-to-treat analysis, the ablation arm had a 36% relative reduction in the primary composite end point (hazard ratio, 0.64 [95% CI, 0.41-0.99]) and a 43% relative reduction in all-cause mortality (hazard ratio, 0.57 [95% CI, 0.33-0.96]) compared with drug therapy alone over a median follow-up of 48.5 months. AF recurrence was decreased with ablation (hazard ratio, 0.56 [95% CI, 0.42-0.74]). The adjusted mean difference for the AFEQT (Atrial Fibrillation Effect on Quality of Life) summary score averaged over the entire 60-month follow-up was 5.0 points, favoring the ablation arm (95% CI, 2.5-7.4 points), and the MAFSI (Mayo Atrial Fibrillation-Specific Symptom Inventory) frequency score difference was -2.0 points, favoring ablation (95% CI, -2.9 to -1.2).

CONCLUSIONS: In patients with AF enrolled in the CABANA trial who had clinically diagnosed stable heart failure at trial entry, catheter ablation produced clinically important improvements in survival, freedom from AF recurrence, and quality of life relative to drug therapy. These results, obtained in a cohort most of whom had preserved left ventricular function, require independent trial verification. Registration: URL: https://www.clinicaltrials.gov/ct2/show/NCT00911508; Unique identifier: NCT0091150.

Keywords: antiarrhythmic drug; atrial fibrillation; catheter ablation; heart failure; paroxysmal atrial fibrillation; persistent atrial fibrillation; pulmonary vein

References

  1. Circ Arrhythm Electrophysiol. 2019 Dec;12(12):e007731 - PubMed
  2. JAMA. 2019 Apr 2;321(13):1275-1285 - PubMed
  3. Eur Heart J. 2019 Apr 21;40(16):1257-1264 - PubMed
  4. Heart Rhythm. 2019 Aug;16(8):e66-e93 - PubMed
  5. Ann Intern Med. 2019 Jul 2;171(1):76-77 - PubMed
  6. Circ Arrhythm Electrophysiol. 2011 Feb;4(1):15-25 - PubMed
  7. Am J Med. 2002 Oct 1;113(5):359-64 - PubMed
  8. J Am Coll Cardiol. 2013 May 7;61(18):1894-903 - PubMed
  9. Eur Heart J. 2012 Jul;33(14):1787-847 - PubMed
  10. Circ Arrhythm Electrophysiol. 2014 Feb;7(1):31-8 - PubMed
  11. J Am Coll Cardiol. 2007 Mar 6;49(9):986-92 - PubMed
  12. Circ Res. 2019 May 24;124(11):1598-1617 - PubMed
  13. Circulation. 1996 Oct 1;94(7):1585-91 - PubMed
  14. Pharmacol Ther. 2017 Aug;176:32-39 - PubMed
  15. Eur Heart J. 2013 Apr;34(14):1061-7 - PubMed
  16. JAMA Cardiol. 2016 Dec 1;1(9):1048-1054 - PubMed
  17. Heart. 2011 May;97(9):740-7 - PubMed
  18. Circulation. 1998 Sep 8;98(10):946-52 - PubMed
  19. Circulation. 2013 Jan 22;127(3):e283-352 - PubMed
  20. JAMA. 2011 May 25;305(20):2080-7 - PubMed
  21. BMC Cardiovasc Disord. 2019 Jan 15;19(1):18 - PubMed
  22. J Am Coll Cardiol. 2017 Oct 17;70(16):1949-1961 - PubMed
  23. J Am Coll Cardiol. 2020 Jun 30;75(25):3105-3118 - PubMed
  24. Am Heart J. 2018 May;199:192-199 - PubMed
  25. Heart Rhythm. 2017 Oct;14(10):e275-e444 - PubMed
  26. Circ Arrhythm Electrophysiol. 2011 Oct;4(5):724-32 - PubMed
  27. Am Heart J. 2020 Aug;226:235-239 - PubMed
  28. J Interv Card Electrophysiol. 2014 Jun;40(1):47-52 - PubMed
  29. Heart Rhythm. 2018 May;15(5):651-657 - PubMed
  30. Eur Heart J. 2019 Jun 14;40(23):1873-1879 - PubMed
  31. Stat Med. 2008 Jul 30;27(17):3227-46 - PubMed
  32. Eur Heart J. 2016 Oct 07;37(38):2882-2889 - PubMed
  33. Heart Rhythm. 2018 Jun;15(6):930-935 - PubMed
  34. J Am Coll Cardiol. 2010 May 25;55(21):2308-16 - PubMed
  35. Eur Heart J. 2012 Nov;33(21):2719-47 - PubMed
  36. Heart Rhythm. 2011 Sep;8(9):1364-71 - PubMed
  37. Circulation. 2016 Apr 26;133(17):1637-44 - PubMed
  38. N Engl J Med. 2018 Feb 01;378(5):417-427 - PubMed
  39. Can J Cardiol. 2018 Nov;34(11):1437-1448 - PubMed
  40. JAMA. 2019 Apr 2;321(13):1261-1274 - PubMed
  41. Am J Med. 2002 Oct 1;113(5):365-70 - PubMed

Publication Types

Grant support