Display options
Share it on

Macromol Biosci. 2021 Apr;21(4):e2000371. doi: 10.1002/mabi.202000371. Epub 2021 Feb 22.

Mannosylated Cationic Copolymers for Gene Delivery to Macrophages.

Macromolecular bioscience

Anton V Lopukhov, Zigang Yang, Matthew J Haney, Tatiana K Bronich, Marina Sokolsky-Papkov, Elena V Batrakova, Natalia L Klyachko, Alexander V Kabanov

Affiliations

  1. Laboratory for Chemical Design of Bionanomaterials, Faculty of Chemistry, M. V. Lomonosov Moscow State University, 1 Leninskie Gory, Moscow, 117234, Russia.
  2. Department of Pharmaceutical Sciences and Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, 985830 Nebraska Medical Center, Omaha, NE, 68198, USA.
  3. Division of Pharmacoengineering and Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina, 125 Mason Farm Road, Chapel Hill, NC, 27599, USA.

PMID: 33615675 PMCID: PMC8126558 DOI: 10.1002/mabi.202000371

Abstract

Macrophages are desirable targets for gene therapy of cancer and other diseases. Cationic diblock copolymers of polyethylene glycol (PEG) and poly-L-lysine (PLL) or poly{N-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} (pAsp(DET)) are synthesized and used to form polyplexes with a plasmid DNA (pDNA) that are decorated with mannose moieties, serving as the targeting ligands for the C type lectin receptors displayed at the surface of macrophages. The PEG-b-PLL copolymers are known for its cytotoxicity, so PEG-b-PLL-based polyplexes are cross-linked using reducible reagent dithiobis(succinimidyl propionate) (DSP). The cross-linked polyplexes display low toxicity to both mouse embryonic fibroblasts NIH/3T3 cell line and mouse bone marrow-derived macrophages (BMMΦ). In macrophages mannose-decorated polyplexes demonstrate an ≈8 times higher transfection efficiency. The cross-linking of the polyplexes decrease the toxicity, but the transfection enhancement is moderate. The PEG-b-pAsp(DET) copolymers display low toxicity with respect to the IC-21 murine macrophage cell line and are used for the production of non-cross-linked pDNA-contained polyplexes. The obtained mannose modified polyplexes exhibit ca. 500-times greater transfection activity in IC-21 macrophages compared to the mannose-free polyplexes. This result greatly exceeds the targeting gene transfer effects previously described using mannose receptor targeted non-viral gene delivery systems. These results suggest that Man-PEG-b-pAsp(DET)/pDNA polyplex is a potential vector for immune cells-based gene therapy.

© 2021 Wiley-VCH GmbH.

Keywords: cationic block copolymer; macrophage transfection; mannose; targeted gene delivery

References

  1. Eur J Cell Biol. 2004 Apr;83(3):97-111 - PubMed
  2. Biomacromolecules. 2009 Sep 14;10(9):2436-45 - PubMed
  3. J Biomed Mater Res A. 2009 Mar 15;88(4):858-71 - PubMed
  4. Biomaterials. 2006 Oct;27(30):5292-8 - PubMed
  5. J Biomed Mater Res A. 2009 Feb;88(2):503-19 - PubMed
  6. J Control Release. 2011 Mar 10;150(2):204-11 - PubMed
  7. J Leukoc Biol. 2003 May;73(5):604-13 - PubMed
  8. Biochim Biophys Acta. 2002 Sep 19;1572(2-3):364-86 - PubMed
  9. J Gene Med. 2004 Apr;6(4):471-7 - PubMed
  10. Gene Ther. 2000 Jan;7(2):126-38 - PubMed
  11. Gene Ther. 2001 May;8(9):713-24 - PubMed
  12. Bioeng Transl Med. 2017 Jan 19;2(1):92-101 - PubMed
  13. Biomacromolecules. 2017 Jan 9;18(1):36-43 - PubMed
  14. Biomaterials. 2008 Mar;29(7):884-93 - PubMed
  15. Biochim Biophys Acta. 2004 May 27;1663(1-2):127-34 - PubMed
  16. J Biol Chem. 1999 Jul 2;274(27):19087-94 - PubMed
  17. J Am Chem Soc. 2004 Mar 3;126(8):2355-61 - PubMed
  18. J Biomater Sci Polym Ed. 2019 Nov;30(16):1471-1488 - PubMed
  19. ACS Omega. 2019 Oct 01;4(16):16756-16767 - PubMed
  20. Biomaterials. 2003 Nov;24(24):4495-506 - PubMed
  21. Bioconjug Chem. 1998 Nov-Dec;9(6):805-12 - PubMed
  22. Blood. 2006 Oct 15;108(8):2827-35 - PubMed
  23. J Cell Sci. 2000 Mar;113 ( Pt 6):1021-32 - PubMed
  24. J Biol Chem. 1992 Jan 25;267(3):1719-26 - PubMed
  25. J Biomed Opt. 2011 Apr;16(4):047003 - PubMed
  26. Mol Pharm. 2013 Mar 4;10(3):975-87 - PubMed
  27. Biomaterials. 2014 Jul;35(20):5359-5368 - PubMed
  28. Antioxid Redox Signal. 2014 Aug 10;21(5):804-17 - PubMed
  29. Macromol Rapid Commun. 2015 Mar;36(5):483-9 - PubMed
  30. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):101-5 - PubMed
  31. Macromol Biosci. 2016 Oct;16(10):1497-1505 - PubMed
  32. Exp Cell Res. 1979 Jan;118(1):135-41 - PubMed
  33. Eur J Pharm Sci. 2018 Mar 1;114:103-113 - PubMed
  34. J Control Release. 2007 Oct 8;122(3):252-60 - PubMed
  35. ChemMedChem. 2006 Apr;1(4):439-44 - PubMed
  36. Bioconjug Chem. 1992 Jul-Aug;3(4):295-301 - PubMed
  37. Adv Sci (Weinh). 2019 Sep 04;6(21):1900582 - PubMed
  38. Phys Rev Lett. 2004 Jul 9;93(2):028301 - PubMed
  39. Biomaterials. 2010 May;31(13):3707-14 - PubMed
  40. Colloids Surf B Biointerfaces. 2000 Oct 1;18(3-4):301-313 - PubMed
  41. Curr Gene Ther. 2009 Dec;9(6):487-94 - PubMed
  42. J Biol Chem. 2000 Jul 14;275(28):21539-48 - PubMed
  43. J Control Release. 2019 Apr 10;299:107-120 - PubMed
  44. J Drug Target. 2001 Jun;9(3):201-7 - PubMed
  45. J Control Release. 2010 Nov 1;147(3):408-12 - PubMed
  46. Bioconjug Chem. 1995 Nov-Dec;6(6):639-43 - PubMed
  47. Mol Pharm. 2015 Feb 2;12(2):453-62 - PubMed
  48. Biomaterials. 2018 Sep;178:95-108 - PubMed
  49. Hum Gene Ther. 1996 Apr 10;7(6):721-9 - PubMed
  50. Chem Soc Rev. 2012 Apr 7;41(7):2562-74 - PubMed
  51. Gene Ther. 2008 Aug;15(16):1131-8 - PubMed
  52. J Control Release. 2016 Jun 10;231:38-49 - PubMed
  53. J Biol Chem. 1983 Jan 10;258(1):199-202 - PubMed
  54. J Control Release. 2018 Oct 10;287:1-11 - PubMed
  55. Int J Pharm. 2000 Sep 25;206(1-2):97-104 - PubMed
  56. J Biomed Mater Res A. 2015 Sep;103(9):2864-74 - PubMed
  57. Transl Res. 2018 Mar;193:13-30 - PubMed
  58. Mol Pharm. 2019 Apr 1;16(4):1714-1722 - PubMed
  59. J Cell Biol. 1983 Jan;96(1):1-27 - PubMed
  60. J Pharmacol Exp Ther. 2006 Aug;318(2):828-34 - PubMed
  61. J Control Release. 2013 Aug 10;169(3):246-56 - PubMed
  62. Mol Ther. 2003 Dec;8(6):936-47 - PubMed
  63. Biomed Res Int. 2015;2015:350580 - PubMed
  64. J Control Release. 2012 Sep 28;162(3):636-45 - PubMed
  65. J Leukoc Biol. 1998 Jul;64(1):85-91 - PubMed
  66. J Phys Chem B. 2014 Jun 26;118(25):7012-25 - PubMed
  67. Macromol Biosci. 2013 Sep;13(9):1163-73 - PubMed
  68. Biotechnol Lett. 2006 Jun;28(11):815-21 - PubMed
  69. Curr Gene Ther. 2009 Dec;9(6):503-10 - PubMed
  70. Brain Res Bull. 2010 Feb 15;81(2-3):256-61 - PubMed
  71. J Biol Chem. 2000 May 12;275(19):14223-30 - PubMed
  72. Biomaterials. 2009 Feb;30(6):1232-45 - PubMed
  73. Acta Biomater. 2014 May;10(5):1847-55 - PubMed
  74. Int J Pharm. 2009 Jun 22;375(1-2):133-9 - PubMed
  75. Am J Respir Cell Mol Biol. 1990 Apr;2(4):317-8 - PubMed
  76. Cell. 1980 Jan;19(1):207-15 - PubMed
  77. ACS Appl Mater Interfaces. 2016 Feb 17;8(6):3719-24 - PubMed
  78. Anal Chem. 2019 May 21;91(10):6836-6843 - PubMed
  79. Pharm Res. 2010 Aug;27(8):1584-96 - PubMed

Publication Types

Grant support