Display options
Share it on

BMC Med Imaging. 2021 Feb 15;21(1):28. doi: 10.1186/s12880-021-00552-0.

HBP-enhancing hepatocellular adenomas and how to discriminate them from FNH in Gd-EOB MRI.

BMC medical imaging

Timo Alexander Auer, Thula Walter-Rittel, Dominik Geisel, Wenzel Schöning, Moritz Schmelzle, Tobias Müller, Bruno Sinn, Timm Denecke, Bernd Hamm, Uli Fehrenbach

Affiliations

  1. Klinik Für Radiologie, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany. [email protected].
  2. Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178, Berlin, 10178, Germany. [email protected].
  3. Klinik Für Radiologie, Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
  4. Department of Surgery, Campus Charité Mitte | Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, Berlin, 13353, Germany.
  5. Medizinische Klinik mit Schwerpunkt Hepatologie und Gastroenterologie, Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Berlin, Germany.
  6. Institute of Pathology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, Berlin, 10117, Germany.
  7. Department of Diagnostic and Interventional Radiology, Universitätsklinikum Leipzig, Liebigstraße 20, Leipzig, 04103, Germany.

PMID: 33588783 PMCID: PMC7885421 DOI: 10.1186/s12880-021-00552-0

Abstract

BACKGROUND: Recent studies provide evidence that hepatocellular  adenomas  (HCAs) frequently take up gadoxetic acid (Gd-EOB) during the hepatobiliary phase (HBP). The purpose of our study was to investigate how to differentiate between Gd-EOB-enhancing HCAs and focal nodular hyperplasias (FNHs). We therefore retrospectively included 40 HCAs classified as HBP Gd-EOB-enhancing lesions from a sample of 100 histopathologically proven HCAs in 65 patients. These enhancing HCAs were matched retrospectively with 28 FNH lesions (standard of reference: surgical resection). Two readers (experienced abdominal radiologists blinded to clinical data) reviewed the images evaluating morphologic features and subjectively scoring Gd-EOB uptake (25-50%, 50-75% and 75-100%) for each lesion. Quantitative lesion-to-liver enhancement was measured in arterial, portal venous (PV), transitional and HBP. Additionally, multivariate regression analyses were performed.

RESULTS: Subjective scoring of intralesional Gd-EOB uptake showed the highest discriminatory accuracies (AUC: 0.848 (R#1); 0.920 (R#2)-p < 0.001) with significantly higher uptake scores assigned to FNHs (Cut-off: 75%-100%). Typical lobulation and presence of a central scar in FNH achieved an accuracy of 0.750 or higher in at least one reader (lobulation-AUC: 0.809 (R#1); 0.736 (R#2); central scar-AUC: 0.595 (R#1); 0.784 (R#2)). The multivariate regression emphasized the discriminatory power of the Gd-EOB scoring (p = 0.001/OR:22.15 (R#1) and p < 0.001/OR:99.12 (R#2). The lesion-to-liver ratio differed significantly between FNH and HCA in the PV phase and HBP (PV: 132.9 (FNH) and 110.2 (HCA), p = 0.048 and HBP: 110.3 (FNH) and 39.2 (HCA), p < 0.001)), while the difference was not significant in arterial and transitional contrast phases (p > 0.05).

CONCLUSION: Even in HBP-enhancing HCA, characterization of Gd-EOB uptake was found to provide the strongest discriminatory power in differentiating HCA from FNH. Furthermore, a lobulated appearance and a central scar are more frequently seen in FNH than in HCA.

Keywords: Focal nodular hyperplasia; Gd-EOB; Hepatocellular adenoma; Liver; Magnetic resonance imaging

References

  1. Gastroenterology. 2017 Mar;152(4):880-894.e6 - PubMed
  2. Dig Surg. 2010;27(1):61-7 - PubMed
  3. Br J Surg. 2014 Jun;101(7):847-55 - PubMed
  4. Magn Reson Imaging. 2013 Jan;31(1):10-6 - PubMed
  5. J Cancer. 2017 May 11;8(7):1301-1310 - PubMed
  6. Eur Radiol. 2012 Aug;22(8):1769-75 - PubMed
  7. Hepatol Int. 2008 Sep;2(3):316-21 - PubMed
  8. AJR Am J Roentgenol. 2018 Aug;211(2):347-357 - PubMed
  9. Radiographics. 2011 Oct;31(6):1529-43 - PubMed
  10. AJR Am J Roentgenol. 2012 Jan;198(1):115-23 - PubMed
  11. J Magn Reson Imaging. 2011 Feb;33(2):409-16 - PubMed
  12. HPB (Oxford). 2010 Oct;12(8):509-22 - PubMed
  13. J Hepatol. 2017 Nov;67(5):1074-1083 - PubMed
  14. N Engl J Med. 1976 Feb 26;294(9):470-2 - PubMed
  15. Dig Surg. 2010;27(1):46-55 - PubMed
  16. Radiology. 2006 Nov;241(2):433-40 - PubMed
  17. Eur Radiol. 2020 Jun;30(6):3497-3506 - PubMed
  18. HPB (Oxford). 2005;7(3):186-96 - PubMed
  19. Eur Radiol. 2014 Jun;24(6):1339-48 - PubMed
  20. Hepatology. 2009 Aug;50(2):481-9 - PubMed
  21. AJR Am J Roentgenol. 2014 Oct;203(4):W408-14 - PubMed
  22. Radiology. 2016 Apr;279(1):118-27 - PubMed
  23. Gastroenterology. 2009 Nov;137(5):1698-705 - PubMed
  24. Radiology. 2012 Feb;262(2):520-9 - PubMed
  25. Jpn J Radiol. 2011 Dec;29(10):739-43 - PubMed
  26. Hepatology. 2008 Sep;48(3):808-18 - PubMed
  27. JAMA. 1979 Aug 17;242(7):644-8 - PubMed
  28. J Magn Reson Imaging. 2014 May;39(5):1259-64 - PubMed
  29. Magn Reson Imaging. 2013 Jun;31(5):755-60 - PubMed
  30. J Magn Reson Imaging. 2012 Sep;36(3):686-96 - PubMed
  31. World J Gastroenterol. 2007 May 21;13(19):2649-54 - PubMed

Publication Types