Display options
Share it on

Front Hum Neurosci. 2021 Feb 12;15:596980. doi: 10.3389/fnhum.2021.596980. eCollection 2021.

Personalized Virtual Reality Human-Computer Interaction for Psychiatric and Neurological Illnesses: A Dynamically Adaptive Virtual Reality Environment That Changes According to Real-Time Feedback From Electrophysiological Signal Responses.

Frontiers in human neuroscience

Jacob Kritikos, Georgios Alevizopoulos, Dimitris Koutsouris

Affiliations

  1. Department of Bioengineering, Imperial College London, South Kensington Campus, London, United Kingdom.
  2. Psychiatric Clinic, Agioi Anargyroi General Oncological Hospital of Kifisia, Athens, Greece.
  3. Biomedical Engineering Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, Athens, Greece.

PMID: 33643010 PMCID: PMC7906990 DOI: 10.3389/fnhum.2021.596980

Abstract

Virtual reality (VR) constitutes an alternative, effective, and increasingly utilized treatment option for people suffering from psychiatric and neurological illnesses. However, the currently available VR simulations provide a predetermined simulative framework that does not take into account the unique personality traits of each individual; this could result in inaccurate, extreme, or unpredictable responses driven by patients who may be overly exposed and in an abrupt manner to the predetermined stimuli, or result in indifferent, almost non-existing, reactions when the stimuli do not affect the patients adequately and thus stronger stimuli are recommended. In this study, we present a VR system that can recognize the individual differences and readjust the VR scenarios during the simulation according to the treatment aims. To investigate and present this dynamically adaptive VR system we employ an Anxiety Disorder condition as a case study, namely arachnophobia. This system consists of distinct anxiety states, aiming to dynamically modify the VR environment in such a way that it can keep the individual within a controlled, and appropriate for the therapy needs, anxiety state, which will be called "desired states" for the study. This happens by adjusting the VR stimulus, in real-time, according to the electrophysiological responses of each individual. These electrophysiological responses are collected by an external electrodermal activity biosensor that serves as a tracker of physiological changes. Thirty-six diagnosed arachnophobic individuals participated in a one-session trial. Participants were divided into two groups, the Experimental Group which was exposed to the proposed real-time adaptive virtual simulation, and the Control Group which was exposed to a pre-recorded static virtual simulation as proposed in the literature. These results demonstrate the proposed system's ability to continuously construct an updated and adapted virtual environment that keeps the users within the appropriately chosen state (higher or lower intensity) for approximately twice the time compared to the pre-recorded static virtual simulation. Thus, such a system can increase the efficiency of VR stimulations for the treatment of central nervous system dysfunctions, as it provides numerically more controlled sessions without unexpected variations.

Copyright © 2021 Kritikos, Alevizopoulos and Koutsouris.

Keywords: electrodermal activity sensor; electrophysiology; human-computer interaction; mental illnesses; neurological illnesses; noninvasive device; real time adaptation; virtual reality

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. Sensors (Basel). 2017 Oct 24;17(10): - PubMed
  2. Biol Psychol. 2002 Sep;60(2-3):91-108 - PubMed
  3. J Anxiety Disord. 2019 Jan;61:55-63 - PubMed
  4. Curr Biol. 2013 Jan 21;23(2):R79-93 - PubMed
  5. J Appl Res Intellect Disabil. 2019 Nov;32(6):1446-1452 - PubMed
  6. IEEE Trans Vis Comput Graph. 2018 Apr;24(4):1594-1603 - PubMed
  7. Biol Psychol. 2016 Dec;121(Pt B):146-152 - PubMed
  8. CNS Spectr. 2016 Jun;21(3):230-8 - PubMed
  9. Behav Res Ther. 2016 Feb;77:147-56 - PubMed
  10. Front Neurosci. 2018 May 08;12:305 - PubMed
  11. Br J Dermatol. 2018 Jun;178(6):1246-1256 - PubMed
  12. Pain. 2003 Aug;104(3):597-608 - PubMed
  13. Front Aging Neurosci. 2017 Jul 27;9:240 - PubMed
  14. J Behav Ther Exp Psychiatry. 2015 Mar;46:133-40 - PubMed
  15. Clin Psychol Rev. 2004 Jul;24(3):259-81 - PubMed
  16. Front Neurosci. 2020 Jan 10;13:1409 - PubMed
  17. Sensors (Basel). 2020 Feb 25;20(5): - PubMed
  18. Maturitas. 2012 Dec;73(4):295-9 - PubMed
  19. Front Robot AI. 2019 Oct 16;6:100 - PubMed
  20. Front Neurol. 2020 Feb 20;11:93 - PubMed
  21. Top Stroke Rehabil. 2017 Jan;24(1):68-79 - PubMed
  22. J Anxiety Disord. 2008 Oct;22(7):1128-36 - PubMed
  23. Comput Math Methods Med. 2015;2015:151702 - PubMed
  24. Clin J Pain. 1993 Sep;9(3):174-82 - PubMed
  25. J Clin Med. 2020 Jan 21;9(2): - PubMed
  26. Cogn Behav Ther. 2017 Sep;46(5):404-420 - PubMed
  27. Eur J Psychotraumatol. 2019 Aug 19;10(1):1654782 - PubMed
  28. Shanghai Arch Psychiatry. 2013 Apr;25(2):68-9 - PubMed
  29. JMIR Ment Health. 2019 Jun 14;6(6):e13869 - PubMed
  30. J Anxiety Disord. 2016 Jan;37:30-9 - PubMed
  31. Cyberpsychol Behav Soc Netw. 2013 Apr;16(4):293-301 - PubMed
  32. Disabil Rehabil. 2017 Feb;39(4):385-388 - PubMed
  33. Cyberpsychol Behav Soc Netw. 2020 Jan;23(1):23-33 - PubMed
  34. Schizophr Res Cogn. 2014 Mar;1(1):e21-e26 - PubMed
  35. Biol Psychiatry. 2006 Aug 15;60(4):410-7 - PubMed
  36. Psychoneuroendocrinology. 2005 Nov;30(10):953-8 - PubMed
  37. JMIR Res Protoc. 2019 Jul 09;8(7):e13368 - PubMed
  38. PLoS One. 2013 Nov 14;8(11):e79025 - PubMed
  39. Appl Ergon. 2002 May;33(3):251-71 - PubMed
  40. Skin Pharmacol Physiol. 2013;26(2):92-100 - PubMed
  41. Lancet Psychiatry. 2018 Aug;5(8):625-632 - PubMed
  42. Behav Res Ther. 2013 Feb;51(2):68-74 - PubMed
  43. Psychol Res. 2017 Jul;81(4):764-776 - PubMed
  44. Behav Res Ther. 2019 Jul;118:130-140 - PubMed
  45. IEEE Trans Neural Syst Rehabil Eng. 2018 Jul;26(7):1345-1352 - PubMed
  46. Front Psychol. 2019 Jan 29;10:74 - PubMed
  47. JAMA Psychiatry. 2019 Mar 1;76(3):259-270 - PubMed
  48. Front Psychiatry. 2019 Oct 31;10:792 - PubMed
  49. Int J Biochem Cell Biol. 2019 Sep;114:105568 - PubMed
  50. J Anxiety Disord. 2019 Jan;61:64-74 - PubMed
  51. Int J Soc Psychiatry. 2006 Nov;52(6):501-11 - PubMed
  52. Trials. 2016 Feb 02;17:60 - PubMed
  53. Epilepsy Res. 2020 Jan;159:106247 - PubMed
  54. Psychiatry Res. 2020 Jun;288:112974 - PubMed
  55. BJPsych Open. 2016 Feb 15;2(1):74-80 - PubMed
  56. Int J Psychophysiol. 2003 Jan;47(1):87-93 - PubMed
  57. Neurology. 2018 Jul 31;91(5):e479-e489 - PubMed
  58. J Anxiety Disord. 2013 Mar;27(2):210-5 - PubMed
  59. Cyberpsychol Behav Soc Netw. 2019 Jan;22(1):39-45 - PubMed
  60. J Autism Dev Disord. 2016 Sep;46(9):3166-76 - PubMed
  61. eNeuro. 2018 Feb 28;5(1): - PubMed
  62. Front Hum Neurosci. 2020 Apr 03;14:90 - PubMed
  63. J Alzheimers Dis. 2020;75(1):23-43 - PubMed
  64. Clin Interv Aging. 2007;2(3):469-76 - PubMed
  65. PLoS One. 2016 Dec 20;11(12):e0167523 - PubMed
  66. Clin Auton Res. 2003 Aug;13(4):256-70 - PubMed
  67. Neuroimage. 2020 Nov 15;222:117297 - PubMed
  68. Cyberpsychol Behav Soc Netw. 2010 Feb;13(1):73-8 - PubMed
  69. Front Hum Neurosci. 2019 Aug 21;13:279 - PubMed
  70. IEEE J Biomed Health Inform. 2019 Sep;23(5):1877-1887 - PubMed
  71. Schizophr Res Treatment. 2012;2012:916198 - PubMed
  72. Front Psychol. 2020 Aug 21;11:1962 - PubMed
  73. Behav Res Ther. 2015 Aug;71:45-53 - PubMed
  74. Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:4604-4610 - PubMed
  75. Front Hum Neurosci. 2019 Jan 04;12:504 - PubMed
  76. J Surg Educ. 2019 Nov - Dec;76(6):1681-1690 - PubMed

Publication Types