Display options
Share it on

Front Microbiol. 2021 Feb 12;12:618857. doi: 10.3389/fmicb.2021.618857. eCollection 2021.

Multifaceted Mechanism of Amicoumacin A Inhibition of Bacterial Translation.

Frontiers in microbiology

Elena M Maksimova, Daria S Vinogradova, Ilya A Osterman, Pavel S Kasatsky, Oleg S Nikonov, Pohl Milón, Olga A Dontsova, Petr V Sergiev, Alena Paleskava, Andrey L Konevega

Affiliations

  1. Petersburg Nuclear Physics Institute named by B. P. Konstantinov, NRC "Kurchatov Institute", Gatchina, Russia.
  2. NanoTemper Technologies Rus, St. Petersburg, Russia.
  3. Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russia.
  4. Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.
  5. Institute of Protein Research, Russian Academy of Sciences, Pushchino, Russia.
  6. Centre for Research and Innovation, Faculty of Health Sciences, Universidad Peruana de Ciencias Aplicadas (UPC), Lima, Peru.
  7. A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.
  8. Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia.
  9. Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, Russia.
  10. National Research Centre "Kurchatov Institute", Moscow, Russia.

PMID: 33643246 PMCID: PMC7907450 DOI: 10.3389/fmicb.2021.618857

Abstract

Amicoumacin A (Ami) halts bacterial growth by inhibiting the ribosome during translation. The Ami binding site locates in the vicinity of the E-site codon of mRNA. However, Ami does not clash with mRNA, rather stabilizes it, which is relatively unusual and implies a unique way of translation inhibition. In this work, we performed a kinetic and thermodynamic investigation of Ami influence on the main steps of polypeptide synthesis. We show that Ami reduces the rate of the functional canonical 70S initiation complex (IC) formation by 30-fold. Additionally, our results indicate that Ami promotes the formation of erroneous 30S ICs; however, IF3 prevents them from progressing towards translation initiation. During early elongation steps, Ami does not compromise EF-Tu-dependent A-site binding or peptide bond formation. On the other hand, Ami reduces the rate of peptidyl-tRNA movement from the A to the P site and significantly decreases the amount of the ribosomes capable of polypeptide synthesis. Our data indicate that Ami progressively decreases the activity of translating ribosomes that may appear to be the main inhibitory mechanism of Ami. Indeed, the use of EF-G mutants that confer resistance to Ami (G542V, G581A, or ins544V) leads to a complete restoration of the ribosome functionality. It is possible that the changes in translocation induced by EF-G mutants compensate for the activity loss caused by Ami.

Copyright © 2021 Maksimova, Vinogradova, Osterman, Kasatsky, Nikonov, Milón, Dontsova, Sergiev, Paleskava and Konevega.

Keywords: amicoumacin A; antibiotic resistance; elongation factor EF-G; initiation; microscale thermophoresis; rapid kinetics; translocation

Conflict of interest statement

AK is a founder of the company NanoTemper Technologies Rus (St. Petersburg, Russia), which provides services and devices based on MST and nanoDSF and represents NanoTemper Technologies GmbH (Germany).

References

  1. Proc Natl Acad Sci U S A. 2018 Sep 18;115(38):9551-9556 - PubMed
  2. Mol Cell. 2007 Jan 26;25(2):285-96 - PubMed
  3. Nat Struct Mol Biol. 2006 Oct;13(10):879-86 - PubMed
  4. AMB Express. 2017 Dec;7(1):23 - PubMed
  5. J Antibiot (Tokyo). 1981 May;34(5):611-3 - PubMed
  6. Molecules. 2016 Jun 24;21(7): - PubMed
  7. Antimicrob Agents Chemother. 2001 Nov;45(11):3156-61 - PubMed
  8. Crit Rev Biochem Mol Biol. 2012 Jul-Aug;47(4):334-48 - PubMed
  9. J Nat Prod. 1991 May-Jun;54(3):785-95 - PubMed
  10. J Antibiot (Tokyo). 2018 Feb;71(2):153-184 - PubMed
  11. Nat Struct Mol Biol. 2006 Oct;13(10):871-8 - PubMed
  12. Nucleic Acids Res. 2017 Jul 7;45(12):7507-7514 - PubMed
  13. RNA. 2004 Jan;10(1):90-101 - PubMed
  14. J Bacteriol. 1993 Nov;175(22):7471-3 - PubMed
  15. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1945-9 - PubMed
  16. Mol Cell. 2004 Jan 16;13(1):113-24 - PubMed
  17. Mar Drugs. 2012 Feb;10(2):319-28 - PubMed
  18. FEBS Lett. 1982 Jul 19;144(1):125-9 - PubMed
  19. Anal Biochem. 2020 Mar 15;593:113581 - PubMed
  20. Biol Chem. 2014 May;395(5):559-75 - PubMed
  21. Mol Cell. 2014 Nov 20;56(4):531-40 - PubMed
  22. Annu Rev Microbiol. 2018 Sep 08;72:185-207 - PubMed
  23. J Biol Chem. 2008 Jun 27;283(26):18431-40 - PubMed
  24. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6427-31 - PubMed
  25. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4161-5 - PubMed
  26. EMBO J. 2001 Apr 17;20(8):1829-39 - PubMed
  27. EMBO J. 2014 May 2;33(9):1073-85 - PubMed
  28. J Biol Chem. 2002 Feb 22;277(8):6032-6 - PubMed
  29. Sci Rep. 2016 Jun 14;6:27720 - PubMed
  30. Cell Mol Life Sci. 2015 Nov;72(22):4341-67 - PubMed
  31. Translation (Austin). 2013 Apr 01;1(1):e24315 - PubMed
  32. Mol Biol Biochem Biophys. 1980;32:368-75 - PubMed
  33. J Antibiot (Tokyo). 2007 Dec;60(12):752-6 - PubMed
  34. Nat New Biol. 1972 Jan 5;235(53):6-9 - PubMed
  35. J Mol Biol. 2007 Oct 26;373(3):551-61 - PubMed
  36. J Mol Biol. 1997 Nov 21;274(1):8-15 - PubMed
  37. Nat Struct Mol Biol. 2010 May;17(5):555-60 - PubMed
  38. Sci Rep. 2015 Mar 24;5:9383 - PubMed
  39. Open Biol. 2019 Jul 26;9(7):190051 - PubMed
  40. Sci Adv. 2019 Dec 20;5(12):eaax8030 - PubMed
  41. Nat Struct Mol Biol. 2014 Sep;21(9):817-24 - PubMed
  42. Int J Syst Evol Microbiol. 2009 Feb;59(Pt 2):417-20 - PubMed
  43. PLoS One. 2012;7(3):e34037 - PubMed
  44. Res Microbiol. 2002 Jun;153(5):269-76 - PubMed
  45. Science. 2013 Jun 28;340(6140):1235490 - PubMed
  46. Science. 2009 Oct 30;326(5953):694-9 - PubMed
  47. J Mol Biol. 2000 Jul 21;300(4):951-61 - PubMed
  48. PLoS Biol. 2020 Jan 29;18(1):e3000593 - PubMed
  49. EMBO J. 1995 Jun 1;14(11):2613-9 - PubMed
  50. Nucleic Acids Res. 2015 Dec 2;43(21):10525-33 - PubMed
  51. PLoS Biol. 2011 Jul;9(7):e1001095 - PubMed
  52. Cold Spring Harb Perspect Biol. 2018 Sep 4;10(9): - PubMed
  53. Methods Enzymol. 2007;430:1-30 - PubMed
  54. Nucleic Acids Res. 2015 Dec 15;43(22):10700-12 - PubMed
  55. Mol Cell. 2008 Jun 20;30(6):712-20 - PubMed

Publication Types