Display options
Share it on

Research (Wash D C). 2020 Dec 02;2020:6539431. doi: 10.34133/2020/6539431. eCollection 2020.

Wavelength-Tunable Single-Mode Microlasers Based on Photoresponsive Pitch Modulation of Liquid Crystals for Information Encryption.

Research (Washington, D.C.)

Fa-Feng Xu, Zhong-Liang Gong, Yu-Wu Zhong, Jiannian Yao, Yong Sheng Zhao

Affiliations

  1. Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
  2. University of Chinese Academy of Sciences, Beijing 100049, China.

PMID: 33623907 PMCID: PMC7877376 DOI: 10.34133/2020/6539431

Abstract

Information encryption and decryption have attracted particular attention; however, the applications are frequently restricted by limited coding capacity due to the indistinguishable broad photoluminescence band of conventional stimuli-responsive fluorescent materials. Here, we present a concept of confidential information encryption with photoresponsive liquid crystal (LC) lasing materials, which were used to fabricate ordered microlaser arrays through a microtemplate-assisted inkjet printing method. LC microlasers exhibit narrow-bandwidth single-mode emissions, and the wavelength of LC microlasers was reversibly modulated based on the optical isomerization of the chiral dopant in LCs. On this basis, we demonstrate phototunable information authentication on LC microlaser arrays using the wavelength of LC microlasers as primary codes. These results provide enlightenment for the implementation of microlaser-based cryptographic primitives for information encryption and anticounterfeiting applications.

Copyright © 2020 Fa-Feng Xu et al.

Conflict of interest statement

The authors declare that there is no conflict of interest regarding the publication of this article.

References

  1. Sci Adv. 2017 Jul 14;3(7):e1700225 - PubMed
  2. Adv Mater. 2011 Aug 2;23(29):3261-5 - PubMed
  3. Nat Commun. 2017 Oct 31;8(1):1138 - PubMed
  4. Nat Mater. 2005 Sep;4(9):685-7 - PubMed
  5. Acc Chem Res. 2016 Sep 20;49(9):1691-700 - PubMed
  6. Chem Commun (Camb). 2010 May 28;46(20):3463-5 - PubMed
  7. Sci Adv. 2018 Jun 22;4(6):eaat8276 - PubMed
  8. Research (Wash D C). 2018 Dec 9;2018:4164029 - PubMed
  9. Angew Chem Int Ed Engl. 2019 Sep 23;58(39):13803-13807 - PubMed
  10. Opt Express. 2008 Nov 10;16(23):18827-37 - PubMed
  11. Nat Commun. 2016 May 12;7:11569 - PubMed
  12. Adv Mater. 2015 Feb 25;27(8):1389-94 - PubMed
  13. Adv Mater. 2017 Aug;29(30): - PubMed
  14. Nat Mater. 2014 May;13(5):524-9 - PubMed
  15. Chem Soc Rev. 2012 May 21;41(10):3878-96 - PubMed
  16. Nature. 2002 Dec 19-26;420(6917):762 - PubMed
  17. Adv Mater. 2016 Dec;28(48):10637-10643 - PubMed
  18. Angew Chem Int Ed Engl. 2017 Mar 1;56(10):2689-2693 - PubMed
  19. Adv Mater. 2018 Jun;30(26):e1800783 - PubMed
  20. Sci Adv. 2015 Sep 18;1(8):e1500257 - PubMed
  21. Nature. 2001 Dec 13;414(6865):708-9 - PubMed
  22. Nat Commun. 2018 May 1;9(1):1525 - PubMed
  23. Angew Chem Int Ed Engl. 2019 Nov 4;58(45):16052-16056 - PubMed
  24. Chem Rev. 2015 Oct 14;115(19):10725-815 - PubMed
  25. Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):12925-12928 - PubMed
  26. Adv Mater. 2010 Jan 26;22(4):468-72 - PubMed
  27. Nat Commun. 2019 Feb 20;10(1):870 - PubMed
  28. J Am Chem Soc. 2014 Jan 29;136(4):1643-9 - PubMed
  29. Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jul;86(1 Pt 1):011705 - PubMed
  30. Nat Mater. 2010 Sep;9(9):745-9 - PubMed
  31. Nat Commun. 2016 May 03;7:11374 - PubMed
  32. Nat Commun. 2014 Apr 07;5:3601 - PubMed
  33. Opt Express. 2005 Apr 4;13(7):2358-63 - PubMed
  34. Nano Lett. 2015 Aug 12;15(8):5647-52 - PubMed
  35. Phys Rev Lett. 2005 Feb 18;94(6):063903 - PubMed
  36. Research (Wash D C). 2020 Apr 22;2020:3839160 - PubMed
  37. Nat Mater. 2005 Jul;4(7):546-9 - PubMed

Publication Types