Display options
Share it on

Genes Brain Behav. 2021 Jun;20(5):e12727. doi: 10.1111/gbb.12727. Epub 2021 Mar 04.

Impaired instrumental learning in Spred1.

Genes, brain, and behavior

Sarah C Borrie, Alexa E Horner, Akihiko Yoshimura, Eric Legius, Maksym V Kopanitsa, Hilde Brems

Affiliations

  1. Department of Human Genetics, KU Leuven, Leuven, Belgium.
  2. Synome Ltd, Cambridge, UK.
  3. Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan.
  4. The Francis Crick Institute, London, UK.

PMID: 33624414 DOI: 10.1111/gbb.12727

Abstract

RASopathies are neuro-cardio-facio-cutaneous disorders stemming from mutations in genes regulating the RAS-MAPK pathway. Legius syndrome is a rare RASopathy disorder caused by mutations in the SPRED1 gene. SPRED1 protein negatively regulates activation of Ras by inhibiting RAS/RAF and by its interaction with neurofibromin, a Ras GTPase-activating protein (RAS-GAP). Cognitive impairments have been reported in Legius syndrome as well as in other RASopathy disorders. Modelling these cognitive deficits in a Spred1 mouse model for Legius syndrome has demonstrated spatial learning and memory deficits, but other cognitive domains remained unexplored. Here, we attempted to utilize a cognitive touchscreen battery to investigate if Spred1

© 2021 International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.

Keywords: MEK inhibition; RAS-MAPK; RASopathy; autism spectrum disorder; cognitive impairment; instrumental learning; mouse; neurodevelopmental disorder; spred1; touchscreen test

References

  1. Ryu H-H, Lee Y-S. Cell type-specific roles of RAS-MAPK signalling in learning and memory: implications in neurodevelopmental disorders. Neurobiol Learn Mem. 2016;135:13-21. https://doi.org/10.1016/j.nlm.2016.06.006. - PubMed
  2. Borrie SC, Brems H, Legius E, Bagni C. Cognitive dysfunctions in intellectual disabilities: the contributions of the Ras-MAPK and PI3K-AKT-mTOR pathways. Annu Rev Genomics Hum Genet. 2017;18(1):115-142. https://doi.org/10.1146/annurev-genom-091416-035332. - PubMed
  3. Shilyansky C, Lee YS, Silva AJ. Molecular and cellular mechanisms of learning disabilities: a focus on NF1. Annu Rev Neurosci. 2010;33:221-243. https://doi.org/10.1146/annurev-neuro-060909-153215. - PubMed
  4. Hyman SL, Shores A, North KN. The nature and frequency of cognitive deficits in children with neurofibromatosis type 1. Neurology. 2005;65(7):1037-1044. https://doi.org/10.1212/01.wnl.0000179303.72345.ce. - PubMed
  5. Rowbotham I, Pit-ten Cate IM, Sonuga-Barke EJS, Huijbregts SCJ. Cognitive control in adolescents with neurofibromatosis type 1. Neuropsychology. 2009;23(1):50-60. https://doi.org/10.1037/a0013927. - PubMed
  6. Payne JM, Hyman SL, Shores EA, North KN. Assessment of executive function and attention in children with neurofibromatosis type 1: relationships between cognitive measures and real-world behaviour. Child Neuropsychol J Norm Abnorm Dev Child Adolesc. 2011;17(4):313-329. https://doi.org/10.1080/09297049.2010.542746. - PubMed
  7. Payne JM, Barton B, Shores EA, North KN. Paired associate learning in children with neurofibromatosis type 1: implications for clinical trials. J Neurol. 2013;260(1):214-220. https://doi.org/10.1007/s00415-012-6620-5. - PubMed
  8. Plasschaert E, Van Eylen L, Descheemaeker M-J, Noens I, Legius E, Steyaert J. Executive functioning deficits in children with neurofibromatosis type 1: the influence of intellectual and social functioning. Am J Med Genet Part B Neuropsychiatr Genet. 2016;171B(3):348-362. https://doi.org/10.1002/ajmg.b.32414. - PubMed
  9. Brems H, Chmara M, Sahbatou M, et al. Germline loss-of-function mutations in SPRED1 cause a neurofibromatosis 1-like phenotype. Nat Genet. 2007;39(9):1120-1126. https://doi.org/10.1038/ng2113. - PubMed
  10. Messiaen L, Yao S, Brems H, et al. Clinical and mutational spectrum of neurofibromatosis type 1-like syndrome. JAMA. 2009;302(19):2111-2118. https://doi.org/10.1001/jama.2009.1663. - PubMed
  11. Brems H, Pasmant E, Van Minkelen R, et al. Review and update of SPRED1 mutations causing legius syndrome. Hum Mutat. 2012;33(11):1538-1546. https://doi.org/10.1002/humu.22152. - PubMed
  12. Denayer E, Descheemaeker MJ, Stewart DR, et al. Observations on intelligence and behaviour in 15 patients with Legius syndrome. Am J Med Genet C Semin Med Genet. 2011;157(2):123-128. https://doi.org/10.1002/ajmg.c.30297. - PubMed
  13. Stowe IB, Mercado EL, Stowe TR, et al. A shared molecular mechanism underlies the human rasopathies Legius syndrome and Neurofibromatosis-1. Genes Dev. 2012;26(13):1421-1426. https://doi.org/10.1101/gad.190876.112. - PubMed
  14. Hirata Y, Brems H, Suzuki M, et al. Interaction between a domain of a negative regulator of the RAS-ERK pathway, SPRED1, and the GTPase-activating protein-related domain of neurofibromin is implicated in Legius syndrome and Neurofibromatosis type 1. J Biol Chem. 2015;291(7):3124-3134. https://doi.org/10.1074/jbc.M115.703710. - PubMed
  15. Dunzendorfer-Matt T, Mercado EL, Maly K, McCormick F, Scheffzek K. The neurofibromin recruitment factor Spred1 binds to the GAP related domain without affecting Ras inactivation. Proc Natl Acad Sci. 2016;113(27):7497-7502. https://doi.org/10.1073/pnas.1607298113. - PubMed
  16. Costa RM, Yang T, Huynh DP, et al. Learning deficits, but normal development and tumor predisposition, in mice lacking exon 23a of Nf1. Nat Genet. 2001;27(4):399-405. https://doi.org/10.1038/86898. - PubMed
  17. Costa RM, Federov NB, Kogan JH, et al. Mechanism for the learning deficits in a mouse model of neurofibromatosis type 1. Nature. 2002;415(6871):526-530. https://doi.org/10.1038/nature711. - PubMed
  18. Denayer E, Ahmed T, Brems H, et al. Spred1 is required for synaptic plasticity and hippocampus-dependent learning. J Neurosci. 2008;28(53):14443-14449. https://doi.org/10.1523/JNEUROSCI.4698-08.2008. - PubMed
  19. Lee YS, Ehninger D, Zhou M, et al. Mechanism and treatment for learning and memory deficits in mouse models of Noonan syndrome. Nat Neurosci. 2014;17(12):1736-1743. https://doi.org/10.1038/nn.3863. - PubMed
  20. Shilyansky C, Karlsgodt KH, Cummings DM, et al. Neurofibromin regulates corticostriatal inhibitory networks during working memory performance. Proc Natl Acad Sci U S A. 2010;107(29):13141-13146. https://doi.org/10.1073/pnas.1004829107. - PubMed
  21. Horner AE, Heath CJ, Hvoslef-Eide M, et al. The touchscreen operant platform for testing learning and memory in rats and mice. Nat Protoc. 2013;8(10):1961-1984. https://doi.org/10.1038/nprot.2013.122. - PubMed
  22. Mar AC, Horner AE, Nilsson SRO, et al. The touchscreen operant platform for assessing executive function in rats and mice. Nat Protoc. 2013;8(10):1985-2005. https://doi.org/10.1038/nprot.2013.123. - PubMed
  23. Payne JM, Barton B, Ullrich NJ, et al. Randomized placebo-controlled study of lovastatin in children with neurofibromatosis type 1. Neurology. 2016;87(24):2575-2584. https://doi.org/10.1212/WNL.0000000000003435. - PubMed
  24. Bussey TJ, Holmes A, Lyon L, et al. New translational assays for preclinical modelling of cognition in schizophrenia: the touchscreen testing method for mice and rats. Neuropharmacology. 2012;62(3):1191-1203. https://doi.org/10.1016/j.neuropharm.2011.04.011. - PubMed
  25. Inoue H, Kato R, Fukuyama S, et al. Spred-1 negatively regulates allergen-induced airway eosinophilia and hyperresponsiveness. J Exp Med. 2005;201(1):73-82. https://doi.org/10.1084/jem.20040616. - PubMed
  26. Nithianantharajah J, Komiyama NH, McKechanie A, et al. Synaptic scaffold evolution generated components of vertebrate cognitive complexity. Nat Neurosci. 2013;16(1):16-24. https://doi.org/10.1038/nn.3276. - PubMed
  27. Oomen CA, Hvoslef-Eide M, Heath CJ, et al. The touchscreen operant platform for testing working memory and pattern separation in rats and mice. Nat Protoc. 2013;8(10):2006-2021. https://doi.org/10.1038/nprot.2013.124. - PubMed
  28. Papale A, Morella IM, Indrigo MT, et al. Impairment of cocaine-mediated behaviours in mice by clinically relevant Ras-ERK inhibitors. Elife. 2016;5:135-163. https://doi.org/10.7554/eLife.17111. - PubMed
  29. Schreiber J, Grimbergen L-A, Overwater I, et al. Mechanisms underlying cognitive deficits in a mouse model for Costello syndrome are distinct from other RASopathy mouse models. Sci Rep. 2017;7(1):1256. https://doi.org/10.1038/s41598-017-01218-0. - PubMed
  30. Fenckova M, Blok LER, Asztalos L, et al. Habituation learning is a widely affected mechanism in drosophila models of intellectual disability and autism Spectrum disorders. Biol Psychiatry. 2019;86(4):294-305. https://doi.org/10.1016/j.biopsych.2019.04.029. - PubMed
  31. Huson SM, Harper PS, Compston D a S. Von Recklinghausen neurofibromatosisa clinical and population study in south-east Wales. Brain. 1988;111(6):1355-1381. https://doi.org/10.1093/brain/111.6.1355. - PubMed
  32. McGaughran JM, Harris DI, Donnai D, et al. A clinical study of type 1 neurofibromatosis in north West England. J Med Genet. 1999;36(3):197-203. - PubMed
  33. Koczkowska M, Chen Y, Callens T, et al. Genotype-phenotype correlation in NF1: evidence for a more severe phenotype associated with missense mutations affecting NF1 codons 844-848. Am J Hum Genet. 2018;102(1):69-87. https://doi.org/10.1016/j.ajhg.2017.12.001. - PubMed
  34. Koczkowska M, Callens T, Chen Y, et al. Clinical spectrum of individuals with pathogenic NF1 missense variants affecting p.Met1149, p.Arg1276, and p.Lys1423: genotype-phenotype study in neurofibromatosis type 1. Hum Mutat. 2020;41(1):299-315. https://doi.org/10.1002/humu.23929. - PubMed
  35. Mautner V-F, Kluwe L, Friedrich RE, et al. Clinical characterisation of 29 neurofibromatosis type-1 patients with molecularly ascertained 1.4 Mb type-1 NF1 deletions. J Med Genet. 2010;47(9):623-630. https://doi.org/10.1136/jmg.2009.075937. - PubMed
  36. Torres Nupan MM, Velez Van Meerbeke A, López Cabra CA, Herrera Gomez PM. Cognitive and behavioural disorders in children with neurofibromatosis type 1. Front Pediatr. 2017;5:227. https://doi.org/10.3389/fped.2017.00227. - PubMed
  37. Ottenhoff MJ, Rietman AB, Mous SE, et al. Examination of the genetic factors underlying the cognitive variability associated with neurofibromatosis type 1. Genet Med. 2020;22(5):889-897. https://doi.org/10.1038/s41436-020-0752-2. - PubMed
  38. Denayer E, Chmara M, Brems H, et al. Legius syndrome in fourteen families. Hum Mutat. 2011;32(1):E1985-E1998. https://doi.org/10.1002/humu.21404. - PubMed
  39. Manning EE, Dombrovski AY, Torregrossa MM, Ahmari SE. Impaired instrumental reversal learning is associated with increased medial prefrontal cortex activity in Sapap3 knockout mouse model of compulsive behaviour. Neuropsychopharmacology. 2019;44(8):1494-1504. https://doi.org/10.1038/s41386-018-0307-2. - PubMed
  40. Torquet N, Marti F, Campart C, et al. Social interactions impact on the dopaminergic system and drive individuality. Nat Commun. 2018;9(1):3081. https://doi.org/10.1038/s41467-018-05526-5. - PubMed
  41. Freund J, Brandmaier AM, Lewejohann L, et al. Emergence of individuality in genetically identical mice. Science. 2013;340(6133):756-759. https://doi.org/10.1126/science.1235294. - PubMed
  42. Schmeisser MJ, Ey E, Wegener S, et al. Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature. 2012;486(7402):256-260. https://doi.org/10.1038/nature11015. - PubMed
  43. Won H, Lee H-R, Gee HY, et al. Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature. 2012;486(7402):261-265. https://doi.org/10.1038/nature11208. - PubMed
  44. Horner AE, McLaughlin CL, Afinowi NO, et al. Enhanced cognition and dysregulated hippocampal synaptic physiology in mice with a heterozygous deletion of PSD-95. Eur J Neurosci. 2018;47(2):164-176. https://doi.org/10.1111/ejn.13792. - PubMed
  45. Miyoshi K, Wakioka T, Nishinakamura H, et al. The Sprouty-related protein, Spred, inhibits cell motility, metastasis, and rho-mediated Actin reorganization. Oncogene. 2004;23(January):5567-5576. https://doi.org/10.1038/sj.onc.1207759. - PubMed
  46. Nix JS, Blakeley J, Rodriguez FJ. An update on the central nervous system manifestations of neurofibromatosis type 1. Acta Neuropathol. 2020;139(4):625-641. https://doi.org/10.1007/s00401-019-02002-2. - PubMed
  47. Phoenix TN, Temple S. Spred1, a negative regulator of Ras-MAPK-ERK, is enriched in CNS germinal zones, dampens NSC proliferation, and maintains ventricular zone structure. Genes Dev. 2010;24(1):45-56. https://doi.org/10.1101/gad.1839510. - PubMed
  48. Lush ME, Li Y, Kwon CH, Chen J, Parada LF. Neurofibromin is required for barrel formation in the mouse somatosensory cortex. J Neurosci. 2008;28(7):1580-1587. https://doi.org/10.1523/JNEUROSCI.5236-07.2008. - PubMed
  49. Chen YH, Gianino SM, Gutmann DH. Neurofibromatosis-1 regulation of neural stem cell proliferation and multilineage differentiation operates through distinct RAS effector pathways. Genes Dev. 2015;29(16):1677-1682. https://doi.org/10.1101/gad.261677.115. - PubMed
  50. Wang Y, Kim E, Wang X, et al. ERK inhibition rescues defects in fate specification of Nf1-deficient neural progenitors and brain abnormalities. Cell. 2012;150(4):816-830. https://doi.org/10.1016/j.cell.2012.06.034. - PubMed
  51. Sanchez-Ortiz E, Cho W, Nazarenko I, Mo W, Chen J, Parada LF. NF1 regulation of RAS/ERK signalling is required for appropriate granule neuron progenitor expansion and migration in cerebellar development. Genes Dev. 2014;28(21):2407-2420. https://doi.org/10.1101/gad.246603.114. - PubMed
  52. Kim JH, Liao D, Lau L-F, Huganir RL. SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron. 1998;20(4):683-691. https://doi.org/10.1016/S0896-6273(00)81008-9. - PubMed
  53. Komiyama NH, Watabe AM, Carlisle HJ, et al. SynGAP regulates ERK/MAPK signalling, synaptic plasticity, and learning in the complex with postsynaptic density 95 and NMDA receptor. J Neurosci. 2002;22(22):9721-9732. - PubMed
  54. Leach PT, Crawley JN. Touchscreen learning deficits in Ube3a, Ts65Dn and Mecp2 mouse models of neurodevelopmental disorders with intellectual disabilities. Genes Brain Behav. 2018;17(6):e12452. https://doi.org/10.1111/gbb.12452. - PubMed
  55. Wang X, Bey AL, Katz BM, et al. Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism. Nat Commun. 2016;7:11459. https://doi.org/10.1038/ncomms11459. - PubMed
  56. Assous M, Martinez E, Eisenberg C, et al. Neuropilin 2 signalling mediates Corticostriatal transmission, spine maintenance, and goal-directed learning in mice. J Neurosci. 2019;39(45):8845-8859. https://doi.org/10.1523/JNEUROSCI.1006-19.2019. - PubMed
  57. Shiflett MW, Gavin M, Tran TS. Altered hippocampal-dependent memory and motor function in neuropilin 2-deficient mice. Transl Psychiatry. 2015;5(3):e521-e521. https://doi.org/10.1038/tp.2015.17. - PubMed
  58. Shofty B, Bergmann E, Zur G, et al. Autism-associated Nf1 deficiency disrupts corticocortical and corticostriatal functional connectivity in human and mouse. Neurobiol Dis. 2019;130:104479. https://doi.org/10.1016/j.nbd.2019.104479. - PubMed
  59. Li W, Cui Y, Kushner SA, et al. The HMG-CoA reductase inhibitor lovastatin reverses the learning and attention deficits in a mouse model of Neurofibromatosis type 1. Curr Biol. 2005;15(21):1961-1967. https://doi.org/10.1016/j.cub.2005.09.043. - PubMed
  60. Payne JM, Hearps SJC, Walsh KS, et al. Reproducibility of cognitive endpoints in clinical trials: lessons from neurofibromatosis type 1. Ann Clin Transl Neurol. 2019;6(12):2555-2565. https://doi.org/10.1002/acn3.50952. - PubMed
  61. LoRusso PM, Krishnamurthi SS, Rinehart JJ, et al. Phase I pharmacokinetic and pharmacodynamic study of the oral MAPK/ERK kinase inhibitor PD-0325901 in patients with advanced cancers. Clin Cancer Res. 2010;16(6):1924-1937. https://doi.org/10.1158/1078-0432.CCR-09-1883. - PubMed
  62. Weiss B, Plotkin S, Widemann B, et al. NFM-06. NF106: phase 2 trial of the MEK inhibitor PD-0325901 in adolescents and adults with NF1-related plexiform neurofibromas: an NF clinical trials consortium study. Neuro-Oncol. 2018;20(suppl 2):i143-i143. https://doi.org/10.1093/neuonc/noy059.514. - PubMed
  63. Inoue SI, Moriya M, Watanabe Y, et al. New BRAF knockin mice provide a pathogenetic mechanism of developmental defects and a therapeutic approach in cardio-facio-cutaneous syndrome. Hum Mol Genet. 2014;23(24):6553-6566. https://doi.org/10.1093/hmg/ddu376. - PubMed
  64. Wu X, Simpson J, Hong JH, et al. MEK-ERK pathway modulation ameliorates disease phenotypes in a mouse model of Noonan syndrome associated with the Raf1L613V mutation. J Clin Invest. 2011;121(3):1009-1025. https://doi.org/10.1172/JCI44929. - PubMed
  65. Kim E, Wang Y, Kim S-J, et al. Transient inhibition of the ERK pathway prevents cerebellar developmental defects and improves long-term motor functions in murine models of neurofibromatosis type 1. Elife. 2014;3:1-27. https://doi.org/10.7554/eLife.05151. - PubMed
  66. Pucilowska J, Vithayathil J, Pagani M, et al. Pharmacological inhibition of ERK signalling rescues pathophysiology and behavioural phenotype associated with 16p11.2 chromosomal deletion in mice. J Neurosci. 2018;10(30):515-517. https://doi.org/10.1523/JNEUROSCI.0515-17.2018. - PubMed
  67. Papale A, D'Isa R, Menna E, et al. Severe intellectual disability and enhanced gamma-Aminobutyric Acidergic synaptogenesis in a novel model of rare RASopathies. Biol Psychiatry. 2016;81(3):179-192. https://doi.org/10.1016/j.biopsych.2016.06.016. - PubMed
  68. Kopanitsa MV, Gou G, Afinowi NO, Bayés À, Grant SGN, Komiyama NH. Chronic treatment with a MEK inhibitor reverses enhanced excitatory field potentials in Syngap1+/− mice. Pharmacol Rep. 2018;70(4):777-783. https://doi.org/10.1016/j.pharep.2018.02.021. - PubMed

Publication Types