Display options
Share it on

Front Cell Dev Biol. 2021 Feb 11;9:617984. doi: 10.3389/fcell.2021.617984. eCollection 2021.

Plasmalogen-Based Liquid Crystalline Multiphase Structures Involving Docosapentaenoyl Derivatives Inspired by Biological Cubic Membranes.

Frontiers in cell and developmental biology

Angelina Angelova, Borislav Angelov, Markus Drechsler, Thomas Bizien, Yulia E Gorshkova, Yuru Deng

Affiliations

  1. Institut Galien Paris-Saclay UMR8612, Université Paris-Saclay, CNRS, Châtenay-Malabry, France.
  2. Institute of Physics, ELI Beamlines, Academy of Sciences of the Czech Republic, Prague, Czech.
  3. Keylab "Electron and Optical Microscopy", Bavarian Polymer Institute, University of Bayreuth, Bayreuth, Germany.
  4. Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, France.
  5. Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Russia.
  6. Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.

PMID: 33644054 PMCID: PMC7905036 DOI: 10.3389/fcell.2021.617984

Abstract

Structural properties of plasmenyl-glycerophospholipids (plasmalogens) have been scarcely studied for plasmalogens with long polyunsaturated fatty acid (PUFA) chains, despite of their significance for the organization and functions of the cellular membranes. Elaboration of supramolecular assemblies involving PUFA-chain plasmalogens in nanostructured mixtures with lyotropic lipids may accelerate the development of nanomedicines for certain severe pathologies (e.g., peroxisomal disorders, cardiometabolic impairments, and neurodegenerative Alzheimer's and Parkinson's diseases). Here, we investigate the spontaneous self-assembly of bioinspired, custom-produced docosapentaenoyl (DPA) plasmenyl (ether) and ester phospholipids in aqueous environment (pH 7) by synchrotron small-angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM). A coexistence of a liquid crystalline primitive cubic

Copyright © 2021 Angelova, Angelov, Drechsler, Bizien, Gorshkova and Deng.

Keywords: SAXS; cryo-TEM; docosapentaenoyl phospholipids; hexosomes; inverted hexagonal phase; lipid cubic phase; plasmalogen-loaded cubosomes

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The handling editor declare

References

  1. J Phys Chem B. 2019 Mar 28;123(12):2662-2672 - PubMed
  2. Langmuir. 2014 May 20;30(19):5373-7 - PubMed
  3. Chem Phys Lipids. 2010 Jun;163(6):403-48 - PubMed
  4. Biochim Biophys Acta. 1987 Jun 30;900(2):191-7 - PubMed
  5. Biochemistry. 1994 May 17;33(19):5805-12 - PubMed
  6. ACS Omega. 2018 Mar 31;3(3):3235-3247 - PubMed
  7. Curr Med Chem. 2009;16(16):2021-41 - PubMed
  8. FEBS Lett. 2017 Sep;591(18):2761-2788 - PubMed
  9. Langmuir. 2019 Nov 12;35(45):14532-14542 - PubMed
  10. J Am Chem Soc. 2002 Jan 16;124(2):318-26 - PubMed
  11. J Lipid Res. 2020 Jun;61(6):840-858 - PubMed
  12. EBioMedicine. 2017 Mar;17:199-205 - PubMed
  13. Adv Planar Lipid Bilayers Liposomes. 2010;12:79-99 - PubMed
  14. Biochim Biophys Acta. 2012 Sep;1822(9):1442-52 - PubMed
  15. Food Funct. 2018 May 23;9(5):3008-3017 - PubMed
  16. Prog Lipid Res. 1998 Sep;37(4):235-76 - PubMed
  17. Food Funct. 2020 Feb 26;11(2):1729-1739 - PubMed
  18. J Lipid Res. 2003 Jan;44(1):182-92 - PubMed
  19. Soft Matter. 2007 Jul 17;3(8):945-955 - PubMed
  20. Neural Regen Res. 2017 Jun;12(6):886-889 - PubMed
  21. Biochim Biophys Acta. 2004 Nov 3;1666(1-2):62-87 - PubMed
  22. J Neurochem. 2001 May;77(4):1168-80 - PubMed
  23. Biochim Biophys Acta. 1990 Feb 28;1031(1):1-69 - PubMed
  24. Int J Mol Sci. 2019 May 01;20(9): - PubMed
  25. Biochim Biophys Acta. 2016 Jan;1858(1):97-103 - PubMed
  26. Atherosclerosis. 2016 Mar;246:130-40 - PubMed
  27. Lipids Health Dis. 2018 Mar 7;17(1):41 - PubMed
  28. J Neurochem. 2017 Dec;143(5):569-583 - PubMed
  29. Hum Mol Genet. 2012 Jun 15;21(12):2713-24 - PubMed
  30. Protein Cell. 2018 Feb;9(2):196-206 - PubMed
  31. Biochem J. 1997 May 1;323 ( Pt 3):807-14 - PubMed
  32. Methods Cell Biol. 2012;108:319-43 - PubMed
  33. FEBS Lett. 2017 Sep;591(18):2700-2713 - PubMed
  34. Nanoscale. 2017 Jul 20;9(28):9797-9804 - PubMed
  35. J Pharm Pharmacol. 2019 Sep;71(9):1370-1383 - PubMed
  36. J Am Chem Soc. 2016 Sep 21;138(37):12159-65 - PubMed
  37. Prog Lipid Res. 2019 Apr;74:186-195 - PubMed
  38. Biochim Biophys Acta. 1987 Nov 13;904(2):283-9 - PubMed
  39. FEBS Lett. 2019 Sep;593(17):2378-2389 - PubMed
  40. Int J Mol Sci. 2019 Aug 13;20(16): - PubMed
  41. J Phys Chem B. 2020 Feb 6;124(5):828-839 - PubMed
  42. Atherosclerosis. 2015 Aug;241(2):539-46 - PubMed
  43. Biochim Biophys Acta. 1992 Aug 10;1109(1):33-42 - PubMed
  44. Chem Phys Lipids. 2011 Sep;164(6):573-89 - PubMed
  45. Clin Chem Lab Med. 2009;47(7):894-7 - PubMed
  46. Chem Phys Lipids. 1996 Jul 15;81(2):167-84 - PubMed
  47. Biochim Biophys Acta. 1991 Jan 30;1061(2):132-40 - PubMed
  48. Phys Chem Chem Phys. 2018 Oct 7;20(37):23928-23941 - PubMed
  49. Molecules. 2019 Dec 12;24(24): - PubMed
  50. Hum Mol Genet. 2001 Jan 15;10(2):127-36 - PubMed
  51. Chem Res Toxicol. 2019 Feb 18;32(2):265-284 - PubMed
  52. EMBO Rep. 2017 Nov;18(11):1893-1904 - PubMed
  53. Ther Deliv. 2015;6(12):1347-64 - PubMed
  54. J Biol Chem. 2018 Jun 1;293(22):8693-8709 - PubMed
  55. Biochim Biophys Acta. 2004 Mar 22;1636(2-3):219-31 - PubMed
  56. Lipids Health Dis. 2019 Apr 16;18(1):100 - PubMed
  57. Arch Gerontol Geriatr. 2013 Jul-Aug;57(1):66-9 - PubMed
  58. Biochem J. 1999 Mar 15;338 ( Pt 3):769-76 - PubMed
  59. J Biol Chem. 1999 Apr 30;274(18):12339-45 - PubMed
  60. Prog Lipid Res. 2010 Oct;49(4):493-8 - PubMed
  61. Interface Focus. 2017 Aug 6;7(4):20160113 - PubMed
  62. Biochimie. 2014 Dec;107 Pt A:58-65 - PubMed
  63. Biochim Biophys Acta Biomembr. 2018 Sep;1860(9):1639-1651 - PubMed
  64. Parkinsons Dis. 2020 Feb 19;2020:2671070 - PubMed
  65. Biochim Biophys Acta. 1996 Feb 21;1279(1):25-34 - PubMed
  66. PLoS One. 2013 Dec 20;8(12):e83508 - PubMed
  67. FASEB J. 2009 Sep;23(9):2866-71 - PubMed
  68. Biochim Biophys Acta. 1999 Jan 4;1436(3):265-78 - PubMed
  69. Adv Colloid Interface Sci. 2009 Mar-Jun;147-148:333-42 - PubMed
  70. Langmuir. 2019 Nov 19;35(46):14949-14958 - PubMed
  71. Lung. 1997;175(1):1-39 - PubMed
  72. ACS Nano. 2014 May 27;8(5):5216-26 - PubMed
  73. Biochemistry. 1981 May 12;20(10):2908-16 - PubMed
  74. Biochemistry. 1987 May 19;26(10):2814-22 - PubMed
  75. Int J Nanomedicine. 2015 Aug 04;10:4981-5003 - PubMed
  76. Molecules. 2019 Aug 22;24(17): - PubMed
  77. Neurochem Res. 1997 Apr;22(4):523-7 - PubMed
  78. ACS Nano. 2019 Jun 25;13(6):6178-6206 - PubMed
  79. Pharm Res. 2017 Feb;34(2):492-505 - PubMed
  80. Biochemistry. 1981 Sep 29;20(20):5728-35 - PubMed
  81. Langmuir. 2018 Nov 13;34(45):13662-13671 - PubMed
  82. Biochim Biophys Acta. 1979 Dec 20;559(4):399-420 - PubMed
  83. Biochemistry. 1985 Mar 26;24(7):1662-8 - PubMed
  84. Interface Focus. 2015 Aug 6;5(4):20150012 - PubMed
  85. Acc Chem Res. 2011 Feb 15;44(2):147-56 - PubMed
  86. J Mol Biol. 1988 Nov 5;204(1):165-89 - PubMed
  87. Hepatology. 2017 Aug;66(2):416-431 - PubMed
  88. Biochemistry. 1990 May 22;29(20):4992-6 - PubMed

Publication Types