Display options
Share it on

Int J Cosmet Sci. 2021 Jun;43(3):311-320. doi: 10.1111/ics.12698. Epub 2021 May 25.

Low-level red plus near infrared lights combination induces expressions of collagen and elastin in human skin in vitro.

International journal of cosmetic science

Wen-Hwa Li, InSeok Seo, Brian Kim, Ali Fassih, Michael D Southall, Ramine Parsa

Affiliations

  1. The Johnson & Johnson Skin Research Center, Johnson & Johnson Consumer Inc., Skillman, NJ, USA.

PMID: 33594706 DOI: 10.1111/ics.12698

Abstract

OBJECTIVE: Light therapy has attracted medical interests as a safe, alternative treatment for photo-ageing and photo-damaged skin. Recent research suggested the therapeutic activity of red and infrared (IR) lights may be effective at much lower energy levels than those used clinically. This study was to evaluate the efficacy of low-level red plus near IR light emitting diode (LED) combination on collagen and elastin and ATP production.

METHODS: Human dermal fibroblasts or skin tissues were irradiated daily by red (640 nm) plus near IR (830 nm) LED lights combination at 0.5 mW/cm

RESULTS: Treatment of human fibroblast cell cultures with low-level red plus near IR lights combination was found to significantly increase LOXL1, ELN and COL1A1 and COL3A1 gene expressions as well as the synthesis of the procollagen type I and elastin proteins. Treating human skin explants with low-level red plus near IR lights combination similarly induced significant increases in the same gene expressions, type III collagen and elastic fibre formation and crosslinks. ATP production was increased in human dermal fibroblasts after red plus near IR lights combination treatment.

CONCLUSION: Low-level red plus near IR lights combination stimulated the production of collagen and elastin production associated with anti-ageing benefits. These findings suggest that low-level red plus near IR LED light combination may provide an effective treatment opportunity for people with photo-aged skin.

© 2021 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

Keywords: genomic/proteomic/ELISA/cell culture; photo-biomodulation; skin physiology/structure

References

  1. L. Baumann, Skin ageing and its treatment. J Pathol. 211, 241-251(2007). - PubMed
  2. R. Ganceviciene, A. I. Liakou, A. Theodoridis, E. Makrantonaki, C. C. Zouboulis, Skin anti-aging strategies. Dermato-Endocrinology. 4, 308-319 (2014). - PubMed
  3. R. R. Anderson, J. A. Parrish, The optics of human skin. J Invest Dermatol. 77, 13-19 (1981). - PubMed
  4. C. R. Simpson, M. Kohl, M. Essenpreis, M. Cope, Near infrared optical properties of ex-vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Phys Med Biol. 43, 2465-2478 (1998). - PubMed
  5. D. Barolet, Light-Emitting Diodes (LEDs) in Dermatology. Semin Cutan Med Surg. 27, 227-238 (2009). - PubMed
  6. S. Farivar, T. Malekshahabi, R. Shiari, Biological effects of low-level laser therapy. J Lasers Med Sci. 5, 58-62 (2014). - PubMed
  7. N. N. Houreld, R. T. Masha, H. Abrahamse, Low-intensity laser irradiation at 660 nm stimulates cytochrome c oxidase in stressed fibroblast cells. Laser Surg Med. 44, 429-434 (2012). - PubMed
  8. C. Ferraresi, B. Kaippert, P. Avci, Y. Huang, M. V. P. de Sousa, V. S. Bagnato et al., Low-level laser (light) therapy increases mitochondrial membrane potential and ATP synthesis in C2C12 myotubes with a peak response at 3-6 hours. Photochem Photobiol. 91, 411-416 (2015). - PubMed
  9. D. Barolet, C. J. Roberge, F. A. Augerm, A. Boucher, L. Germain, Regulation of skin collagen metabolism in vitro using a pulsed 660 nm LED light source: clinical correlation with a single-blinded study. J Invest Dermatol. 129, 2751-2759 (2009). - PubMed
  10. D. R. Opel, E. Hagstrom, A. K. Pace, K. Sisto, S. A. Hirano-Ali, S. Desai et al., Light-emitting diodes: A brief review and clinical experience. J Clin Aesthet Dermatol. 8, 36-44 (2015). - PubMed
  11. Y. Zhang, S. Song, C. C. Fong, C. H. Tsang, Z. Yang, M. Yang, cDNA microarray analysis of gene expression profiles in human fibroblast cells irradiated with red light. J Invest Dermatol. 120, 849-857 (2013). - PubMed
  12. P. J. Huang, Y. C. Huang, M. F. Su, T. Y. Yang, J. R. Huang, C. P. Jiang, In vitro observations on the influence of copper peptide aids for the LED photoirradiation of fibroblast collagen synthesis. Photomed Laser Surg. 25, 183-190 (2007). - PubMed
  13. L. R. Horwitz, T. J. Burke, D. Carnegie, Augmentation of wound healing using monochromatic infrared energy: exploration of a new technology for wound management. Adv Wound Care. 12, 35-40 (1999). - PubMed
  14. S. Hunter, D. Langemo, D. Hanson, J. Anderson, P. Thompson, The use of monochromatic infrared energy in wound management. Adv Skin Wound Care. 20, 265-266 (2007). - PubMed
  15. F. R. Paolillo, A. Borghi-Silva, N. A. Parizotto, C. Kurachi, V. S. Bagnato, New treatment of cellulite with infrared-LED illumination applied during high-intensity treadmill training. J Cosmet Laser Ther. 13, 166-171 (2011). - PubMed
  16. S. B. Rezende, M. S. Ribeiro, S. C. Nunez, V. G. Garcia, E. P. Maldonado, Effects of a single near-infrared laser treatment on cutaneous wound healing: biometrical and histological study in rats. J Photochem Photobio. 87, 145-153 (2007). - PubMed
  17. E. M. Vinck, B. J. Cagnie, M. J. Cornelissen, H. A. Declercq, D. C. Cambier, Increased fibroblast proliferation induced by light emitting diode and low power laser irradiation. Lasers Med Sci. 18, 95-99 (2003). - PubMed
  18. A. C. Chen, P. R. Arany, Y. Huang, E. M. Tomkinson, S. K. Sharma, G. B. Kharkwal et al., Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS One. 6, e22453 (2011). - PubMed
  19. M. Y. Akhalaya, G. V. Maksimov, A. B. Rubin, J. Lademann, M. E. Darvin, Molecular action mechanisms of solar infrared radiation and heat on human skin. Ageing Res Rev. 16, 1-11 (2014). - PubMed
  20. B. Russell, L. R. Reilly, N. Kellet, A study to determine the efficacy of combination LED light therapy (633 nm and 830 nm) in facial skin rejuvenation. J Cosmet Laser Ther. 7, 196-200 (2005). - PubMed
  21. N. Sadick, A study to determine the efficacy of a novel handheld light-emitting diode device in the treatment of photoaged skin. J Cosmet Dermatol. 7, 263-267 (2008). - PubMed
  22. A. Wunsch, K. Matuschka, A controlled trial to determine the efficacy of red and near-infrared light treatment in patient satisfaction, reduction of fine lines, wrinkles, skin roughness, and intradermal collagen density increase. Photomed Laser Surg. 1, 93-100 (2014). - PubMed
  23. R. C. R. Patriota, C. J. Rodrigues, L. C. Cucé, Intense pulsed light in photoaging: a clinical, histopathological and immunohistochemical evaluation. An Bras Dermatol. 86, 1129-1133 (2011). - PubMed
  24. H. Ma, J. P. Yang, R. K. Tan, H. W. Lee, S. K. Han, Effect of low-level laser therapy on proliferation and collagen synthesis of human fibroblasts in vitro. J. Wound Management Res. 14, 1-6 (2018). - PubMed
  25. R. A. Weiss, D. H. McDaniel, R. G. Geronemus, M. A. Weiss, Clinical trial of a novel non-thermal LED array for reversal of photoaging: Clinical, histologic, and surface profilometric results. Lasers Surgery Med. 36, 85-91 (2005). - PubMed
  26. D. Rossetti, M. G. Kielmanowicz, S. Vigodman, Y. P. Hu, N. Chen, A. Nkengne et al., A novel anti-ageing mechanism for retinol: induction of dermal elastin synthesis and elastin fiber formation. International J Cosmet Sci. 33, 62-69(2010). - PubMed
  27. M. Levame, F. Meyer, Herovici's picropolychromium. Application to the identification of type I and III collagens. Path Biol. 35, 1183-1188 (1986). - PubMed
  28. A. M. P. Fitzgerald, J. J. R. Kirkpatrick, I. T. H. Foo, I. I. Naylor, Human skin histology as demonstrated by Herovici's stain: a guide for the improvement of dermal substitutes for use with cultured keratinocytes. Burns. 22, 200-202 (1996). - PubMed
  29. N. Kollias, G. Zonios, G. N. Stamatas, Fluorescence spectroscopy of skin. Vibration Spec. 28, 17-23 (2002). - PubMed
  30. R. Gillies, G. Zonios, R. R. Anderson, N. Kollias, Fluorescence Excitation Spectroscopy Provides Information about human skin in vivo. J Invest Dermatol. 115, 704-707 (2000). - PubMed
  31. R. Richards-Kortum, E. Sevick-Muraca, Quantitative optical spectroscopy for tissue diagnosis. Ann Rev Phys Chem. 47, 555-606 (1996). - PubMed
  32. J. Varani, R. L. Wamer, M. Gharaee-Kernani, S. H. Phan, S. Kang, J. Chung et al., Vitamin A antagonizes decreased cell growth and elevated collagen-degrading-matrix metalloproteinases and stimulates collagen accumulation in naturally aged human skin. J Invest Dermatol. 114, 480-486 (2000). - PubMed
  33. R. C. Siegel, S. R. Pinnell, G. R. Martin, Cross-linking of collagen and elastin. Properties of lysyl oxidase. Biochem. 9, 4486-4492(1970). - PubMed
  34. E. Noblesse, V. Cenizo, C. Bouez, A. Borel, C. Gleyzal, S. Peyrol et al., Lysyl oxidase-like and lysyl oxidase are present in the dermis and epidermis of a skin Equivalent and in human skin and are associated to elastic fibers. J Invest Dermatol. 122, 621-630 (2004). - PubMed
  35. I. K. Hornstra, S. Birge, B. Starcher, A. J. Bailey, R. P. Mecham, S. D. Shapiro, Lysyl oxidase is required for vascular and diaphragmatic development in mice. J Bio Chem. 278, 14387-14393 (2003). - PubMed
  36. J. M. Mäki, J. Räsänen, H. Tikkanen, R. Sormunen, K. Mäkikallio, K. I. Kivirikko, R. Soininen, Inactivation of the lysyl oxidase gene leads to aortic aneurysms, cardiovascular dysfunction, and perinatal death in mice. Circulation. 106, 2503-2509 (2002). - PubMed
  37. J. M. Maki, R. Sormunen, S. Lippo, R. Kaarteenaho-Wiik, R. Soininen, J. Myllyharju, lysyl oxidase is essential for normal development and function of the respiratory system and for the integrity of elastic and collagen fibers in various tissues. Am J Pathol. 167, 927-936 (2005). - PubMed
  38. X. Liu, Y. Zhao, J. Gao, B. Pawlyk, B. Starcher, J. A. Spencer et al., Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nat. Genet. 36, 178-182 (2004). - PubMed
  39. V. Lutz, M. Sattler, S. Gallinat, H. Wenck, R. Poertner, F. Fischer, Impact of collagen crosslinking on the second harmonic generation signal and the fluorescence lifetime of collagen autofluorescence. Skin Res Tech. 18, 168-179 (2012). - PubMed
  40. Y. Q. Chen, E. F. Bernstein, K. Tamai, K. J. Shepley, K. S. Resnik, H. Zhang et al., Enhanced elastin and fibrillin gene expression in chronically photodamaged skin. J Invest Dermatol. 103, 182-186 (1994). - PubMed
  41. A. K. Langton, E. Tsoureli-Nikita, C. E. M. Griffiths, A. Katsambas, C. Antoniou, A. Stratigos et al., Lysyl oxidase activity in human skin is increased by chronic ultraviolet radiation exposure and smoking. Br J Dermatol. 176, 1376-1378 (2017). - PubMed
  42. X. Gao, D. Xing, Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci. 16, 4-20 (2009). - PubMed
  43. D. Saperia, E. Glassberg, R. F. Lyons, R. P. Abergel, P. Baneux, J. C. Castel et al., Demonstration of elevated type I and type III procollagen mRNA levels in cutaneous wounds treated with helium-neon laser: proposed mechanism for enhanced wound healing. Biochem Biophys Res Commun. 138, 1123-1128 (1986). - PubMed

Publication Types

Grant support