Display options
Share it on

Drug Dev Res. 2021 Sep;82(6):730-753. doi: 10.1002/ddr.21796. Epub 2021 Feb 09.

Potential of enhancer of zeste homolog 2 inhibitors for the treatment of SWI/SNF mutant cancers and tumor microenvironment modulation.

Drug development research

Karolina Pyziak, Agnieszka Sroka-Porada, Tomasz Rzymski, Józef Dulak, Agnieszka Łoboda

Affiliations

  1. Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
  2. Biology R&D, Ryvu Therapeutics S.A., Kraków, Poland.

PMID: 33565092 DOI: 10.1002/ddr.21796

Abstract

Enhancer of zeste homolog 2 (EZH2), a catalytic component of polycomb repressive complex 2 (PRC2), is commonly overexpressed or mutated in many cancer types, both of hematological and solid nature. Till now, plenty of EZH2 small molecule inhibitors have been developed and some of them have already been tested in clinical trials. Most of these inhibitors, however, are effective only in limited cases in the context of EZH2 gain-of-function mutated tumors such as lymphomas. Other cancer types with aberrant EZH2 expression and function require alternative approaches for successful treatment. One possibility is to exploit synthetic lethal strategy, which is based on the phenomenon that concurrent loss of two genes is detrimental but the deletion of either of them leaves cell viable. In the context of EZH2/PRC2, the most promising synthetic lethal target seems to be SWItch/Sucrose Non-Fermentable chromatin remodeling complex (SWI/SNF), which is known to counteract PRC2 functions. SWI/SNF is heavily involved in carcinogenesis and its subunits have been found mutated in approximately 20% of tumors of different kinds. In the current review, we summarize the existing knowledge of synthetic lethal relationships between EZH2/PRC2 and components of the SWI/SNF complex and discuss in detail the potential application of existing EZH2 inhibitors in cancer patients harboring mutations in SWI/SNF proteins. We also highlight recent discoveries of EZH2 involvement in tumor microenvironment regulation and consequences for future therapies. Although clinical studies are limited, the fundamental research might help to understand which patients are most likely to benefit from therapies using EZH2 inhibitors.

© 2021 Wiley Periodicals, LLC.

Keywords: EZH2; PRC2; SWI/SNF; epigenetics; synthetic lethality

References

  1. Ae, K., Kobayashi, N., Sakuma, R., Ogata, T., Kuroda, H., Kawaguchi, N., Shinomiya, K., & Kitamura, Y. (2002). Chromatin remodeling factor encoded by ini1 induces G1 arrest and apoptosis in ini1-deficient cells. Oncogene, 21(20), 3112-3120. https://doi.org/10.1038/sj.onc.1205414 - PubMed
  2. Alimova, I., Birks, D. K., Harris, P. S., Knipstein, J. A., Venkataraman, S., Marquez, V. E., Foreman, N. K., & Vibhakar, R. (2013). Inhibition of EZH2 suppresses self-renewal and induces radiation sensitivity in atypical rhabdoid teratoid tumor cells. Neuro-Oncology, 15(2), 149-160. https://doi.org/10.1093/neuonc/nos285 - PubMed
  3. Arenas-Ramirez, N., Sahin, D., & Boyman, O. (2018). Epigenetic mechanisms of tumor resistance to immunotherapy. Cellular and Molecular Life Sciences, 75(22), 4163-4176. https://doi.org/10.1007/s00018-018-2908-7 - PubMed
  4. Arvey, A., van der Veeken, J., Samstein, R. M., Feng, Y., Stamatoyannopoulos, J. A., & Rudensky, A. Y. (2014). Inflammation-induced repression of chromatin bound by the transcription factor Foxp3 in regulatory T cells. Nature Immunology, 15(6), 580-587. https://doi.org/10.1038/ni.2868 - PubMed
  5. Bennett, R. L., & Licht, J. D. (2018). Targeting epigenetics in Cancer. Annual Review of Pharmacology and Toxicology, 58(1), 187-207. https://doi.org/10.1146/annurev-pharmtox-010716-105106 - PubMed
  6. Bezu, L., Wu Chuang, A., Liu, P., Kroemer, G., & Kepp, O. (2019). Immunological effects of epigenetic modifiers. Cancers, 11(12), 1911. https://doi.org/10.3390/cancers11121911 - PubMed
  7. Białopiotrowicz, E., Noyszewska-Kania, M., Kachamakova-Trojanowska, N., Łoboda, A., Cybulska, M., Grochowska, A., Kopczyński, M., Mikula, M., Prochorec-Sobieszek, M., Firczuk, M., Graczyk-Jarzynka, A., Zagożdżon, R., Ząbek, A., Młynarz, P., Dulak, J., Górniak, P., Szydłowski, M., Pyziak, K., Martyka, J., … Juszczyński, P. (2020). Serine biosynthesis pathway supports MYC-miR-494-EZH2 feed-forward circuit necessary to maintain metabolic and epigenetic reprogramming of Burkitt lymphoma cells. Cancers, 12(3), 580.-. https://doi.org/10.3390/cancers12030580 - PubMed
  8. Biegel, J. A., Zhou, J.-Y., Rorke, L. B., Stenstrom, C., Wainwright, L. M., & Fogelgren, B. (1999). Germ-line and acquired mutations of INI1 in atypical teratoid and rhabdoid tumors. Cancer Research, 59, 74-79. - PubMed
  9. Bitler, B. G., Aird, K. M., Garipov, A., Li, H., Amatangelo, M., Kossenkov, A. V., Schultz, D. C., Liu, Q., Shih, I.-M., Conejo-Garcia, J. R., Speicher, D. W., & Zhang, R. (2015). Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nature Medicine, 21(3), 231-238. https://doi.org/10.1038/nm.3799 - PubMed
  10. Blackledge, N. P., Farcas, A. M., Kondo, T., King, H. W., McGouran, J. F., Hanssen, L. L. P., Ito, S., Cooper, S., Kondo, K., Koseki, Y., Ishikura, T., Long, H. K., Sheahan, T. W., Brockdorff, N., Kessler, B. M., Koseki, H., & Klose, R. J. (2014). Variant PRC1 complex-dependent H2A Ubiquitylation drives PRC2 recruitment and Polycomb domain formation. Cell, 157(6), 1445-1459. https://doi.org/10.1016/j.cell.2014.05.004 - PubMed
  11. Blackledge, N. P., Rose, N. R., & Klose, R. J. (2015). Targeting Polycomb systems to regulate gene expression: Modifications to a complex story. Nature Reviews Molecular Cell Biology, 16(11), 643-649. https://doi.org/10.1038/nrm4067 - PubMed
  12. Bödör, C., Grossmann, V., Popov, N., Okosun, J., O'Riain, C., Tan, K., Marzec, J., Araf, S., Wang, J., Lee, A. M., Clear, A., Montoto, S., Matthews, J., Iqbal, S., Rajnai, H., Rosenwald, A., Ott, G., Campo, E., Rimsza, L. M., … Fitzgibbon, J. (2013). EZH2 mutations are frequent and represent an early event in follicular lymphoma. Blood, 122(18), 3165-3168. https://doi.org/10.1182/blood-2013-04-496893 - PubMed
  13. Bödör, C., O'Riain, C., Wrench, D., Matthews, J., Iyengar, S., Tayyib, H., Calaminici, M., Clear, A., Iqbal, S., Quentmeier, H., Drexler, H. G., Montoto, S., Lister, A. T., Gribben, J. G., Matolcsy, A., & Fitzgibbon, J. (2011). EZH2 Y641 mutations in follicular lymphoma. Leukemia, 25(4), 726-729. https://doi.org/10.1038/leu.2010.311 - PubMed
  14. Bos, P. D., Plitas, G., Rudra, D., Lee, S. Y., & Rudensky, A. Y. (2013). Transient regulatory T cell ablation deters oncogene-driven breast cancer and enhances radiotherapy. The Journal of Experimental Medicine, 210(11), 2435-2466. https://doi.org/10.1084/jem.20130762 - PubMed
  15. Boyd, C., Smith, M., Kluwe, L., Balogh, A., MacCollin, M., & Plotkin, S. (2008). Alterations in the SMARCB1 (INI1) tumor suppressor gene in familial schwannomatosis. Clinical Genetics, 74(4), 358-366. https://doi.org/10.1111/j.1399-0004.2008.01060.x - PubMed
  16. Boyer, L. A., Plath, K., Zeitlinger, J., Brambrink, T., Medeiros, L. A., Lee, T. I., Levine, S. S., Wernig, M., Tajonar, A., Ray, M. K., Bell, G. W., Otte, A. P., Vidal, M., Gifford, D. K., Young, R. A., & Jaenisch, R. (2006). Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature, 441(7091), 349-353. https://doi.org/10.1038/nature04733 - PubMed
  17. Bracken, A. P., Kleine-Kohlbrecher, D., Dietrich, N., Pasini, D., Gargiulo, G., Beekman, C., Theilgaard-Monch, K., Minucci, S., Porse, B. T., Marine, J.-C., Hansen, K. H., & Helin, K. (2007). The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes & Development, 21(5), 525-530. https://doi.org/10.1101/gad.415507 - PubMed
  18. Brugarolas, J. (2013). PBRM1 and BAP1 as novel targets for renal cell carcinoma. The Cancer Journal, 19(4), 324-332. https://doi.org/10.1097/PPO.0b013e3182a102d1 - PubMed
  19. Bugide, S., Green, M. R., & Wajapeyee, N. (2018). Inhibition of enhancer of zeste homolog 2 (EZH2) induces natural killer cell-mediated eradication of hepatocellular carcinoma cells. Proceedings of the National Academy of Sciences, 115(15), E3509-E3518. https://doi.org/10.1073/pnas.1802691115 - PubMed
  20. Bultman, G., Tom, Y., Della, M., La, C., Nicholson, J., Gilliam, A., Randazzo, F., Metzger, D., Chambon, P., Crabtree, G., & Magnuson, T. (2000). A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Molecular Cell, 6(6), 1287-1295. https://doi.org/10.1016/S1097-2765(00)00127-1 - PubMed
  21. Callegaro-Filho, D., Gershenson, D. M., Nick, A. M., Munsell, M. F., Ramirez, P. T., Eifel, P. J., Euscher, E. D., Marques, R. M., Nicolau, S. M., & Schmeler, K. M. (2016). Small cell carcinoma of the ovary-hypercalcemic type (SCCOHT): A review of 47 cases. Gynecologic Oncology, 140(1), 53-57. https://doi.org/10.1016/j.ygyno.2015.11.004 - PubMed
  22. Cancer Genome Atlas Research Network. (2014). Comprehensive molecular characterization of urothelial bladder carcinoma. Nature, 507(7492), 315-322. https://doi.org/10.1038/nature12965 - PubMed
  23. Cao, R., Wang, L., Wang, H., Xia, L., Erdjument-Bromage, H., Tempst, P., Jones, R. S., & Zhang, Y. (2002). Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science (New York, N.Y.), 298(5595), 1039-1043. https://doi.org/10.1126/science.1076997 - PubMed
  24. Chammas, P., Mocavini, I., & Di Croce, L. (2020). Engaging chromatin: PRC2 structure meets function. British Journal of Cancer, 122(3), 315-328. https://doi.org/10.1038/s41416-019-0615-2 - PubMed
  25. Chan-Penebre, E., Armstrong, K., Drew, A., Grassian, A. R., Feldman, I., Knutson, S. K., Kuplast-Barr, K., Roche, M., Campbell, J., Ho, P., Copeland, R. A., Chesworth, R., Smith, J. J., Keilhack, H., & Ribich, S. A. (2017). Selective killing of SMARCA2- and SMARCA4-deficient small cell carcinoma of the ovary, Hypercalcemic type cells by inhibition of EZH2: In Vitro and In Vivo preclinical models. Molecular Cancer Therapeutics, 16(5), 850-860. https://doi.org/10.1158/1535-7163.MCT-16-0678 - PubMed
  26. Chen, X., Hiller, M., Sancak, Y., & Fuller, M. T. (2005). Tissue-specific TAFs counteract Polycomb to turn on terminal differentiation. Science, 310(5749), 869-872. https://doi.org/10.1126/science.1118101 - PubMed
  27. Chen, Z., Lu, X., Jia, D., Jing, Y., Chen, D., Wang, Q., Zhao, F., Li, J., Yao, M., Cong, W., & He, X. (2018). Hepatic SMARCA4 predicts HCC recurrence and promotes tumour cell proliferation by regulating SMAD6 expression. Cell Death & Disease, 9(2), 59. https://doi.org/10.1038/s41419-017-0090-8 - PubMed
  28. Conway, E., Jerman, E., Healy, E., Ito, S., Holoch, D., Oliviero, G., Deevy, O., Glancy, E., Fitzpatrick, D. J., Mucha, M., Watson, A., Rice, A. M., Chammas, P., Huang, C., Pratt-Kelly, I., Koseki, Y., Nakayama, M., Ishikura, T., Streubel, G., … Bracken, A. P. (2018). A family of vertebrate-specific Polycombs encoded by the LCOR/LCORL genes balance PRC2 subtype activities. Molecular Cell, 70(3), 408-421.e8. https://doi.org/10.1016/j.molcel.2018.03.005 - PubMed
  29. Curiel, T. J., Coukos, G., Zou, L., Alvarez, X., Cheng, P., Mottram, P., Evdemon-Hogan, M., Conejo-Garcia, J. R., Zhang, L., Burow, M., Zhu, Y., Wei, S., Kryczek, I., Daniel, B., Gordon, A., Myers, L., Lackner, A., Disis, M. L., Knutson, K. L., … Zou, W. (2004). Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nature Medicine, 10(9), 942-949. https://doi.org/10.1038/nm1093 - PubMed
  30. Czermin, B., Melfi, R., McCabe, D., Seitz, V., Imhof, A., & Pirrotta, V. (2002). Drosophila enhancer of Zeste/ESC complexes have a histone H3 Methyltransferase activity that Marks chromosomal Polycomb sites. Cell, 111(2), 185-196. https://doi.org/10.1016/S0092-8674(02)00975-3 - PubMed
  31. Dietrich, N., Bracken, A. P., Trinh, E., Schjerling, C. K., Koseki, H., Rappsilber, J., Helin, K., & Hansen, K. H. (2007). Bypass of senescence by the polycomb group protein CBX8 through direct binding to the INK4A-ARF locus. The EMBO Journal, 26(6), 1637-1648. https://doi.org/10.1038/sj.emboj.7601632 - PubMed
  32. Duncan, I. M. (1982). Polycomblike: A gene that appears to be required for the normal expression of the bithorax and antennapedia gene complexes of Drosophila melanogaster. Genetics, 102(1), 49-70. - PubMed
  33. DuPage, M., Chopra, G., Quiros, J., Rosenthal, W. L., Morar, M. M., Holohan, D., Zhang, R., Turka, L., Marson, A., & Bluestone, J. A. (2015). The chromatin-modifying enzyme Ezh2 is critical for the maintenance of regulatory T cell identity after activation. Immunity, 42(2), 227-238. https://doi.org/10.1016/j.immuni.2015.01.007 - PubMed
  34. Emmings, E., Mullany, S., Chang, Z., Landen, C., Linder, S., & Bazzaro, M. (2019). Targeting mitochondria for treatment of Chemoresistant ovarian Cancer. International Journal of Molecular Sciences, 20(1), 229. https://doi.org/10.3390/ijms20010229 - PubMed
  35. Erkek, S., Johann, P. D., Finetti, M. A., Drosos, Y., Chou, H.-C., Zapatka, M., Sturm, D., Jones, D. T. W., Korshunov, A., Rhyzova, M., Wolf, S., Mallm, J.-P., Beck, K., Witt, O., Kulozik, A. E., Frühwald, M. C., Northcott, P. A., Korbel, J. O., Lichter, P., … Kool, M. (2019). Comprehensive analysis of chromatin states in atypical Teratoid/Rhabdoid tumor identifies diverging roles for SWI/SNF and Polycomb in gene regulation. Cancer Cell, 35(1), 95-110.e8. https://doi.org/10.1016/j.ccell.2018.11.014 - PubMed
  36. Fang, J., Chen, T., Chadwick, B., Li, E., & Zhang, Y. (2004). Ring1b-mediated H2A Ubiquitination associates with inactive X chromosomes and is involved in initiation of X inactivation. Journal of Biological Chemistry, 279(51), 52812-52815. https://doi.org/10.1074/jbc.C400493200 - PubMed
  37. Faust, C., Schumacher, A., Holdener, B., & Magnuson, T. (1995). The eed mutation disrupts anterior mesoderm production in mice. Development (Cambridge, England), 121(2), 273-285. - PubMed
  38. Fioravanti, R., Stazi, G., Zwergel, C., Valente, S., & Mai, A. (2018). Six years (2012-2018) of researches on catalytic EZH2 inhibitors: The boom of the 2-Pyridone compounds. Chemical Record (New York, N.Y.), 18(12), 1818-1832. https://doi.org/10.1002/tcr.201800091 - PubMed
  39. Fong, P. C., Boss, D. S., Yap, T. A., Tutt, A., Wu, P., Mergui-Roelvink, M., Mortimer, P., Swaisland, H., Lau, A., O'Connor, M. J., Ashworth, A., Carmichael, J., Kaye, S. B., Schellens, J. H. M., & de Bono, J. S. (2009). Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. New England Journal of Medicine, 361(2), 123-134. https://doi.org/10.1056/NEJMoa0900212 - PubMed
  40. Foulkes, W. D., Clarke, B. A., Hasselblatt, M., Majewski, J., Albrecht, S., & McCluggage, W. G. (2014). No small surprise - small cell carcinoma of the ovary, hypercalcaemic type, is a malignant rhabdoid tumour: Whole exome sequencing unites rare tumours. The Journal of Pathology, 233(3), 209-214. https://doi.org/10.1002/path.4362 - PubMed
  41. Francis, N. J. (2004). Chromatin compaction by a Polycomb group protein complex. Science, 306(5701), 1574-1577. https://doi.org/10.1126/science.1100576 - PubMed
  42. Fukumoto, T., Magno, E., & Zhang, R. (2018). SWI/SNF complexes in ovarian Cancer: Mechanistic insights and therapeutic implications. Molecular Cancer Research: MCR, 16(12), 1819-1825. https://doi.org/10.1158/1541-7786.MCR-18-0368 - PubMed
  43. Garczyk, S., Schneider, U., Lurje, I., Becker, K., Vögeli, T. A., Gaisa, N. T., & Knüchel, R. (2018). ARID1A-deficiency in urothelial bladder cancer: No predictive biomarker for EZH2-inhibitor treatment response? PLoS One, 13(8), e0202965. https://doi.org/10.1371/journal.pone.0202965 - PubMed
  44. Gnyszka, A., Jastrzębski, Z., & Flis, S. (2013). DNA Methyltransferase inhibitors and their emerging role in epigenetic therapy of Cancer. Anticancer Research, 33(8), 2989-2996. - PubMed
  45. Goswami, S., Apostolou, I., Zhang, J., Skepner, J., Anandhan, S., Zhang, X., Xiong, L., Trojer, P., Aparicio, A., Subudhi, S. K., Allison, J. P., Zhao, H., & Sharma, P. (2018). Modulation of EZH2 expression in T cells improves efficacy of anti-CTLA-4 therapy. The Journal of Clinical Investigation, 128(9), 3813-3818. https://doi.org/10.1172/JCI99760 - PubMed
  46. Guan, B., Wang, T.-L., & Shih, I.-M. (2011). ARID1A, a factor that promotes formation of SWI/SNF-mediated chromatin remodeling, is a tumor suppressor in gynecologic cancers. Cancer Research, 71(21), 6718-6727. https://doi.org/10.1158/0008-5472.CAN-11-1562 - PubMed
  47. Guglielmelli, P., Biamonte, F., Score, J., Hidalgo-Curtis, C., Cervantes, F., Maffioli, M., Fanelli, T., Ernst, T., Winkelman, N., Jones, A. V., Zoi, K., Reiter, A., Duncombe, A., Villani, L., Bosi, A., Barosi, G., Cross, N. C. P., & Vannucchi, A. M. (2011). EZH2 mutational status predicts poor survival in myelofibrosis. Blood, 118(19), 5227-5234. https://doi.org/10.1182/blood-2011-06-363424 - PubMed
  48. Guidi, C. J., Sands, A. T., Zambrowicz, B. P., Turner, T. K., Demers, D. A., Webster, W., Smith, T. W., Imbalzano, A. N., & Jones, S. N. (2001). Disruption of Ini1 leads to Peri-implantation lethality and tumorigenesis in mice. Molecular and Cellular Biology, 21(10), 3598-3603. https://doi.org/10.1128/MCB.21.10.3598-3603.2001 - PubMed
  49. Hadfield, K. D., Newman, W. G., Bowers, N. L., Wallace, A., Bolger, C., Colley, A., McCann, E., Trump, D., Prescott, T., & Evans, D. G. R. (2008). Molecular characterisation of SMARCB1 and NF2 in familial and sporadic schwannomatosis. Journal of Medical Genetics, 45(6), 332-339. https://doi.org/10.1136/jmg.2007.056499 - PubMed
  50. Hakimi, A. A., Pham, C. G., & Hsieh, J. J. (2013). A clear picture of renal cell carcinoma. Nature Genetics, 45(8), 849-850. https://doi.org/10.1038/ng.2708 - PubMed
  51. Hauenschild, A., Ringrose, L., Altmutter, C., Paro, R., & Rehmsmeier, M. (2008). Evolutionary plasticity of Polycomb/Trithorax response elements in Drosophila species. PLoS Biology, 6(10), e261. https://doi.org/10.1371/journal.pbio.0060261 - PubMed
  52. Hauri, S., Comoglio, F., Seimiya, M., Gerstung, M., Glatter, T., Hansen, K., Aebersold, R., Paro, R., Gstaiger, M., & Beisel, C. (2016). A high-density map for navigating the human Polycomb Complexome. Cell Reports, 17(2), 583-595. https://doi.org/10.1016/j.celrep.2016.08.096 - PubMed
  53. He, S., Liu, Y., Meng, L., Sun, H., Wang, Y., Ji, Y., Purushe, J., Chen, P., Li, C., Madzo, J., Issa, J.-P., Soboloff, J., Reshef, R., Moore, B., Gattinoni, L., & Zhang, Y. (2017). Ezh2 phosphorylation state determines its capacity to maintain CD8 + T memory precursors for antitumor immunity. Nature Communications, 8(1), 1-14. https://doi.org/10.1038/s41467-017-02187-8 - PubMed
  54. Hernandez-Munoz, I., Taghavi, P., Kuijl, C., Neefjes, J., & van Lohuizen, M. (2005). Association of BMI1 with Polycomb bodies is dynamic and requires PRC2/EZH2 and the maintenance DNA Methyltransferase DNMT1. Molecular and Cellular Biology, 25(24), 11047-11058. https://doi.org/10.1128/MCB.25.24.11047-11058.2005 - PubMed
  55. Ho, T. H., Kapur, P., Eckel-Passow, J. E., Christie, A., Joseph, R. W., Serie, D. J., Cheville, J. C., Thompson, R. H., Homayoun, F., Panwar, V., Brugarolas, J., & Parker, A. S. (2017). Multicenter validation of enhancer of Zeste homolog 2 expression as an independent prognostic marker in localized Clear cell renal cell carcinoma. Journal of Clinical Oncology, 35(32), 3706-3713. https://doi.org/10.1200/JCO.2017.73.3238 - PubMed
  56. Hodges, C., Kirkland, J. G., & Crabtree, G. R. (2016). The many roles of BAF (mSWI/SNF) and PBAF complexes in Cancer. Cold Spring Harbor Perspectives in Medicine, 6(8), a026930. https://doi.org/10.1101/cshperspect.a026930 - PubMed
  57. Hoffman, G. R., Rahal, R., Buxton, F., Xiang, K., McAllister, G., Frias, E., Bagdasarian, L., Huber, J., Lindeman, A., Chen, D., Romero, R., Ramadan, N., Phadke, T., Haas, K., Jaskelioff, M., Wilson, B. G., Meyer, M. J., Saenz-Vash, V., Zhai, H., … Jagani, Z. (2014). Functional epigenetics approach identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers. Proceedings of the National Academy of Sciences, 111(8), 3128-3133. https://doi.org/10.1073/pnas.1316793111 - PubMed
  58. Hölzel, M., & Tüting, T. (2016). Inflammation-induced plasticity in melanoma therapy and metastasis. Trends in Immunology, 37(6), 364-374. https://doi.org/10.1016/j.it.2016.03.009 - PubMed
  59. Hornick, J. L., Dal Cin, P., & Fletcher, C. D. M. (2009). Loss of INI1 expression is characteristic of both conventional and proximal-type Epithelioid sarcoma. The American Journal of Surgical Pathology, 33(4), 542-550. https://doi.org/10.1097/PAS.0b013e3181882c54 - PubMed
  60. Hsieh, J. J., Purdue, M. P., Signoretti, S., Swanton, C., Albiges, L., Schmidinger, M., Heng, D. Y., Larkin, J., & Ficarra, V. (2017). Renal cell carcinoma. Nature Reviews Disease Primers, 3, 17009. https://doi.org/10.1038/nrdp.2017.9 - PubMed
  61. Hsu, J. H.-R., Rasmusson, T., Robinson, J., Pachl, F., Read, J., Kawatkar, S., O'Donovan, D. H., Bagal, S., Code, E., Rawlins, P., Argyrou, A., Tomlinson, R., Gao, N., Zhu, X., Chiarparin, E., Jacques, K., Shen, M., Woods, H., Bednarski, E., … Bloecher, A. (2020). EED-targeted PROTACs degrade EED, EZH2, and SUZ12 in the PRC2 complex. Cell Chemical Biology, 27(1), 41-46.e17. https://doi.org/10.1016/j.chembiol.2019.11.004 - PubMed
  62. Huqun, Ishikawa, R., Zhang, J., Miyazawa, H., Goto, Y., Shimizu, Y., Hagiwara, K., & Koyama, N. (2012). Enhancer of zeste homolog 2 is a novel prognostic biomarker in nonsmall cell lung cancer. Cancer, 118(6), 1599-1606. https://doi.org/10.1002/cncr.26441 - PubMed
  63. Hyman, D. M., Taylor, B. S., & Baselga, J. (2017). Implementing genome-driven oncology. Cell, 168(4), 584-599. https://doi.org/10.1016/j.cell.2016.12.015 - PubMed
  64. Illingworth, R. S., Moffat, M., Mann, A. R., Read, D., Hunter, C. J., Pradeepa, M. M., Adams, I. R., & Bickmore, W. A. (2015). The E3 ubiquitin ligase activity of RING1B is not essential for early mouse development. Genes & Development, 29(18), 1897-1902. https://doi.org/10.1101/gad.268151.115 - PubMed
  65. Italiano, A., Soria, J.-C., Toulmonde, M., Michot, J.-M., Lucchesi, C., Varga, A., Coindre, J.-M., Blakemore, S. J., Clawson, A., Suttle, B., McDonald, A. A., Woodruff, M., Ribich, S., Hedrick, E., Keilhack, H., Thomson, B., Owa, T., Copeland, R. A., Ho, P. T. C., & Ribrag, V. (2018). Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: A first-in-human, open-label, phase 1 study. The Lancet Oncology, 19(5), 649-659. https://doi.org/10.1016/S1470-2045(18)30145-1 - PubMed
  66. Jacobs, J. J. L., & van Lohuizen, M. (2002). Polycomb repression: From cellular memory to cellular proliferation and cancer. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 1602, 151-161. - PubMed
  67. Januario, T., Ye, X., Bainer, R., Alicke, B., Smith, T., Haley, B., Modrusan, Z., Gould, S., & Yauch, R. L. (2017). PRC2-mediated repression of SMARCA2 predicts EZH2 inhibitor activity in SWI/SNF mutant tumors. Proceedings of the National Academy of Sciences, 114(46), 12249-12254. https://doi.org/10.1073/pnas.1703966114 - PubMed
  68. Jelinic, P., Mueller, J. J., Olvera, N., Dao, F., Scott, S. N., Shah, R., Gao, J., Schultz, N., Gonen, M., Soslow, R. A., Berger, M. F., & Levine, D. A. (2014). Recurrent SMARCA4 mutations in small cell carcinoma of the ovary. Nature Genetics, 46(5), 424-426. https://doi.org/10.1038/ng.2922 - PubMed
  69. Jelinic, P., Schlappe, B. A., Conlon, N., Tseng, J., Olvera, N., Dao, F., Mueller, J. J., Hussein, Y., Soslow, R. A., & Levine, D. A. (2016). Concomitant loss of SMARCA2 and SMARCA4 expression in small cell carcinoma of the ovary, hypercalcemic type. Modern Pathology, 29(1), 60-66. https://doi.org/10.1038/modpathol.2015.129 - PubMed
  70. Jiao, Y., Pawlik, T. M., Anders, R. A., Selaru, F. M., Streppel, M. M., Lucas, D. J., Niknafs, N., Guthrie, V. B., Maitra, A., Argani, P., Offerhaus, G. J. A., Roa, J. C., Roberts, L. R., Gores, G. J., Popescu, I., Alexandrescu, S. T., Dima, S., Fassan, M., Simbolo, M., … Wood, L. D. (2013). Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nature Genetics, 45(12), 1470-1473. https://doi.org/10.1038/ng.2813 - PubMed
  71. Jones, S., Wang, T.-L., Shih, I.-M., Mao, T.-L., Nakayama, K., Roden, R., Glas, R., Slamon, D., Diaz, L. A., Vogelstein, B., Kinzler, K. W., Velculescu, V. E., & Papadopoulos, N. (2010). Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science (New York, N.Y.), 330(6001), 228-231. https://doi.org/10.1126/science.1196333 - PubMed
  72. Joshi, N. S., Akama-Garren, E. H., Lu, Y., Lee, D.-Y., Chang, G. P., Li, A., DuPage, M., Tammela, T., Kerper, N. R., Farago, A. F., Robbins, R., Crowley, D. M., Bronson, R. T., & Jacks, T. (2015). Regulatory T cells in tumor-associated tertiary lymphoid structures suppress anti-tumor T cell responses. Immunity, 43(3), 579-590. https://doi.org/10.1016/j.immuni.2015.08.006 - PubMed
  73. Kadoch, C., Copeland, R. A., & Keilhack, H. (2016). PRC2 and SWI/SNF chromatin remodeling complexes in health and disease. Biochemistry, 55(11), 1600-1614. https://doi.org/10.1021/acs.biochem.5b01191 - PubMed
  74. Kadoch, C., Hargreaves, D. C., Hodges, C., Elias, L., Ho, L., Ranish, J., & Crabtree, G. R. (2013). Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nature Genetics, 45(6), 592-601. https://doi.org/10.1038/ng.2628 - PubMed
  75. Kadoch, C., Williams, R. T., Calarco, J. P., Miller, E. L., Weber, C. M., Braun, S. M. G., Pulice, J. L., Chory, E. J., & Crabtree, G. R. (2017). Dynamics of BAF-Polycomb complex opposition on heterochromatin in normal and oncogenic states. Nature Genetics, 49(2), 213-222. https://doi.org/10.1038/ng.3734 - PubMed
  76. Kahn, T. G., Dorafshan, E., Schultheis, D., Zare, A., Stenberg, P., Reim, I., Pirrotta, V., & Schwartz, Y. B. (2016). Interdependence of PRC1 and PRC2 for recruitment to Polycomb response elements. Nucleic Acids Research, gkw70144(21), 10132-10149. https://doi.org/10.1093/nar/gkw701 - PubMed
  77. Kalimuthu, S. N., & Chetty, R. (2016). Gene of the month: SMARCB1. Journal of Clinical Pathology, 69(6), 484-489. https://doi.org/10.1136/jclinpath-2016-203650 - PubMed
  78. Kalpana, G., Marmon, S., Wang, W., Crabtree, G., & Goff, S. (1994). Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5. Science, 266(5193), 2002-2006. https://doi.org/10.1126/science.7801128 - PubMed
  79. Karantanos, T., Christofides, A., Bardhan, K., Li, L., & Boussiotis, V. A. (2016). Regulation of T cell differentiation and function by EZH2. Frontiers in Immunology, 7, 172. https://doi.org/10.3389/fimmu.2016.00172 - PubMed
  80. Karnezis, A. N., Wang, Y., Ramos, P., Hendricks, W. P., Oliva, E., D'Angelo, E., Prat, J., Nucci, M. R., Nielsen, T. O., Chow, C., Leung, S., Kommoss, F., Kommoss, S., Silva, A., Ronnett, B. M., Rabban, J. T., Bowtell, D. D., Weissman, B. E., Trent, J. M., … Huntsman, D. G. (2016). Dual loss of the SWI/SNF complex ATPases SMARCA4/BRG1 and SMARCA2/BRM is highly sensitive and specific for small cell carcinoma of the ovary, hypercalcaemic type: SMARCA4/SMARCA2 loss in small cell carcinoma, hypercalcaemic type. The Journal of Pathology, 238(3), 389-400. https://doi.org/10.1002/path.4633 - PubMed
  81. Katagiri, A., Nakayama, K., Rahman, M. T., Rahman, M., Katagiri, H., Nakayama, N., Ishikawa, M., Ishibashi, T., Iida, K., Kobayashi, H., Otsuki, Y., Nakayama, S., & Miyazaki, K. (2012). Loss of ARID1A expression is related to shorter progression-free survival and chemoresistance in ovarian clear cell carcinoma. Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology, Inc, 25(2), 282-288. https://doi.org/10.1038/modpathol.2011.161 - PubMed
  82. Kawano, S., Grassian, A. R., Tsuda, M., Knutson, S. K., Warholic, N. M., Kuznetsov, G., Xu, S., Xiao, Y., Pollock, R. M., Smith, J. S., Kuntz, K. K., Ribich, S., Minoshima, Y., Matsui, J., Copeland, R. A., Tanaka, S., & Keilhack, H. (2016). Preclinical evidence of anti-tumor activity induced by EZH2 inhibition in human models of synovial sarcoma. PLoS One, 11(7), e0158888. https://doi.org/10.1371/journal.pone.0158888 - PubMed
  83. Kennison, J. A., & Tamkun, J. W. (1988). Dosage-dependent modifiers of polycomb and antennapedia mutations in Drosophila. Proceedings of the National Academy of Sciences, 85(21), 8136-8140. https://doi.org/10.1073/pnas.85.21.8136 - PubMed
  84. Khavari, P. A., Peterson, C. L., Tamkun, J. W., Mendel, D. B., & Crabtree, G. R. (1993). BRG1 contains a conserved domain of the SWI2/SNF2 family necessary for normal mitotic growth and transcription. Nature, 366(6451), 170-174. https://doi.org/10.1038/366170a0 - PubMed
  85. Kim, J., Akbani, R., Creighton, C. J., Lerner, S. P., Weinstein, J. N., Getz, G., & Kwiatkowski, D. J. (2015). Invasive bladder Cancer: Genomic insights and therapeutic promise. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 21(20), 4514-4524. https://doi.org/10.1158/1078-0432.CCR-14-1215 - PubMed
  86. Kim, K. H., Kim, W., Howard, T. P., Vazquez, F., Tsherniak, A., Wu, J. N., Wang, W., Haswell, J. R., Walensky, L. D., Hahn, W. C., Orkin, S. H., & Roberts, C. W. M. (2015). SWI/SNF-mutant cancers depend on catalytic and non-catalytic activity of EZH2. Nature Medicine, 21(12), 1491-1496. https://doi.org/10.1038/nm.3968 - PubMed
  87. Kim, K. H., & Roberts, C. W. M. (2014). Mechanisms by which SMARCB1 loss drives rhabdoid tumor growth. Cancer Genetics, 207(9), 365-372. https://doi.org/10.1016/j.cancergen.2014.04.004 - PubMed
  88. Klages, K., Mayer, C. T., Lahl, K., Loddenkemper, C., Teng, M. W. L., Ngiow, S. F., Smyth, M. J., Hamann, A., Huehn, J., & Sparwasser, T. (2010). Selective depletion of Foxp3+ regulatory T cells improves effective therapeutic vaccination against established melanoma. Cancer Research, 70(20), 7788-7799. https://doi.org/10.1158/0008-5472.CAN-10-1736 - PubMed
  89. Kleer, C. G., Cao, Q., Varambally, S., Shen, R., Ota, I., Tomlins, S. A., Ghosh, D., Sewalt, R. G. A. B., Otte, A. P., Hayes, D. F., Sabel, M. S., Livant, D., Weiss, S. J., Rubin, M. A., & Chinnaiyan, A. M. (2003). EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 100(20), 11606-11611. https://doi.org/10.1073/pnas.1933744100 - PubMed
  90. Klochendler-Yeivin, A., Fiette, L., Barra, J., Muchardt, C., Babinet, C., & Yaniv, M. (2000). The murine SNF5/INI1 chromatin remodeling factor is essential for embryonic development and tumor suppression. EMBO Reports, 1(6), 500-506. https://doi.org/10.1093/embo-reports/kvd129 - PubMed
  91. Klose, R. J., Cooper, S., Farcas, A. M., Blackledge, N. P., & Brockdorff, N. (2013). Chromatin sampling-An emerging perspective on targeting Polycomb repressor proteins. PLoS Genetics, 9(8), e1003717. https://doi.org/10.1371/journal.pgen.1003717 - PubMed
  92. Knutson, S. K., Warholic, N. M., Wigle, T. J., Klaus, C. R., Allain, C. J., Raimondi, A., Porter Scott, M., Chesworth, R., Moyer, M. P., Copeland, R. A., Richon, V. M., Pollock, R. M., Kuntz, K. W., & Keilhack, H. (2013). Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2. Proceedings of the National Academy of Sciences, 110(19), 7922-7927. https://doi.org/10.1073/pnas.1303800110 - PubMed
  93. Kohashi, K., & Oda, Y. (2017). Oncogenic roles of SMARCB1/INI1 and its deficient tumors. Cancer Science, 108(4), 547-552. https://doi.org/10.1111/cas.13173 - PubMed
  94. Kouznetsova, V. L., Tchekanov, A., Li, X., Yan, X., & Tsigelny, I. F. (2019). Polycomb repressive 2 complex-Molecular mechanisms of function. Protein Science, 28, 1387-1399. https://doi.org/10.1002/pro.3647 - PubMed
  95. Kupryjańczyk, J., Dansonka-Mieszkowska, A., Moes-Sosnowska, J., Plisiecka-Hałasa, J., Szafron, Ł., Podgórska, A., Rzepecka, I. K., Konopka, B., Budziłowska, A., Rembiszewska, A., Grajkowska, W., & Śpiewankiewicz, B. (2013). Ovarian small cell carcinoma of hypercalcemic type - Evidence of germline origin and smarca4 gene inactivation. A pilot study. Polish Journal of Pathology, 4, 238-246. https://doi.org/10.5114/pjp.2013.39331 - PubMed
  96. Kuzmichev, A. (2002). Histone methyltransferase activity associated with a human multiprotein complex containing the enhancer of Zeste protein. Genes & Development, 16(22), 2893-2905. https://doi.org/10.1101/gad.1035902 - PubMed
  97. Kwon, H., Imbalzano, A. N., Khavari, P. A., Kingston, R. E., & Green, M. R. (1994). Nucleosome disruption and enhancement of activator binding by a human SW1/SNF complex. Nature, 370(6489), 477-481. https://doi.org/10.1038/370477a0 - PubMed
  98. LaFargue, C. J., Dal Molin, G. Z., Sood, A. K., & Coleman, R. L. (2019). Exploring and comparing adverse events between PARP inhibitors. The Lancet Oncology, 20(1), e15-e28. https://doi.org/10.1016/S1470-2045(18)30786-1 - PubMed
  99. LaFave, L. M., Béguelin, W., Koche, R., Teater, M., Spitzer, B., Chramiec, A., Papalexi, E., Keller, M. D., Hricik, T., Konstantinoff, K., Micol, J.-B., Durham, B., Knutson, S. K., Campbell, J. E., Blum, G., Shi, X., Doud, E. H., Krivtsov, A. V., Chung, Y. R., … Levine, R. L. (2015). Loss of BAP1 function leads to EZH2-dependent transformation. Nature Medicine, 21(11), 1344-1349. https://doi.org/10.1038/nm.3947 - PubMed
  100. Laurent, B. C., Treich, I., & Carlson, M. (1993). The yeast SNF2/SWI2 protein has DNA-stimulated ATPase activity required for transcriptional activation. Genes & Development, 7(4), 583-591. https://doi.org/10.1101/gad.7.4.583 - PubMed
  101. Lawrence, M. S., Stojanov, P., Mermel, C. H., Robinson, J. T., Garraway, L. A., Golub, T. R., Meyerson, M., Gabriel, S. B., Lander, E. S., & Getz, G. (2014). Discovery and saturation analysis of cancer genes across 21 tumour types. Nature, 505(7484), 495-501. https://doi.org/10.1038/nature12912 - PubMed
  102. Ler, L. D., Ghosh, S., Chai, X., Thike, A. A., Heng, H. L., Siew, E. Y., Dey, S., Koh, L. K., Lim, J. Q., Lim, W. K., Myint, S. S., Loh, J. L., Ong, P., Sam, X. X., Huang, D., Lim, T., Tan, P. H., Nagarajan, S., Cheng, C. W. S., … Teh, B. T. (2017). Loss of tumor suppressor KDM6A amplifies PRC2-regulated transcriptional repression in bladder cancer and can be targeted through inhibition of EZH2. Science Translational Medicine, 9(378), eaai8312. https://doi.org/10.1126/scitranslmed.aai8312 - PubMed
  103. Levine, S. S., Weiss, A., Erdjument-Bromage, H., Shao, Z., Tempst, P., & Kingston, R. E. (2002). The Core of the Polycomb repressive complex is compositionally and functionally conserved in flies and humans. Molecular and Cellular Biology, 22(17), 6070-6078. https://doi.org/10.1128/MCB.22.17.6070-6078.2002 - PubMed
  104. Lewis, P.H. (1947). New mutants report. Drosophila Information Service, 21(69). - PubMed
  105. Lewis, E. B. (1978). A gene complex controlling segmentation in Drosophila. Nature, 276(5688), 565-570. https://doi.org/10.1038/276565a0 - PubMed
  106. Liu, J., Cao, L., Chen, J., Song, S., Lee, I. H., Quijano, C., Liu, H., Keyvanfar, K., Chen, H., Cao, L.-Y., Ahn, B.-H., Kumar, N. G., Rovira, I. I., Xu, X.-L., van Lohuizen, M., Motoyama, N., Deng, C.-X., & Finkel, T. (2009). Bmi1 regulates mitochondrial function and the DNA damage response pathway. Nature, 459(7245), 387-392. https://doi.org/10.1038/nature08040 - PubMed
  107. Liu, J., Blake, S. J., Harjunpää, H., Fairfax, K. A., Yong, M. C. R., Allen, S., Kohrt, H. E., Takeda, K., Smyth, M. J., & Teng, M. W. L. (2016). Assessing immune-related adverse events of efficacious combination immunotherapies in preclinical models of Cancer. Cancer Research, 76(18), 5288-5301. https://doi.org/10.1158/0008-5472.CAN-16-0194 - PubMed
  108. Liu, L., Xu, Z., Zhong, L., Wang, H., Jiang, S., Long, Q., Xu, J., & Guo, J. (2013). Prognostic value of EZH2 expression and activity in renal cell carcinoma: A prospective study. PLoS One, 8(11), e81484. https://doi.org/10.1371/journal.pone.0081484 - PubMed
  109. Love, C., Sun, Z., Jima, D., Li, G., Zhang, J., Miles, R., Richards, K. L., Dunphy, C. H., Choi, W. W. L., Srivastava, G., Lugar, P. L., Rizzieri, D. A., Lagoo, A. S., Bernal-Mizrachi, L., Mann, K. P., Flowers, C. R., Naresh, K. N., Evens, A. M., Chadburn, A., … Dave, S. S. (2012). The genetic landscape of mutations in Burkitt lymphoma. Nature Genetics, 44(12), 1321-1325. https://doi.org/10.1038/ng.2468 - PubMed
  110. Lu, C., & Allis, C. D. (2017). SWI/SNF complex in cancer. Nature Genetics, 49(2), 178-179. https://doi.org/10.1038/ng.3779 - PubMed
  111. Lue, J. K., & Amengual, J. E. (2018). Emerging EZH2 inhibitors and their application in lymphoma. Current Hematologic Malignancy Reports, 13(5), 369-382. https://doi.org/10.1007/s11899-018-0466-6 - PubMed
  112. Ma, A., Stratikopoulos, E., Park, K.-S., Wei, J., Martin, T. C., Yang, X., Schwarz, M., Leshchenko, V., Rialdi, A., Dale, B., Lagana, A., Guccione, E., Parekh, S., Parsons, R., & Jin, J. (2020). Discovery of a first-in-class EZH2 selective degrader. Nature Chemical Biology, 16(2), 214-222. https://doi.org/10.1038/s41589-019-0421-4 - PubMed
  113. Mager, J., Montgomery, N. D., de Villena, F. P.-M., & Magnuson, T. (2003). Genome imprinting regulated by the mouse Polycomb group protein Eed. Nature Genetics, 33(4), 502-507. https://doi.org/10.1038/ng1125 - PubMed
  114. Makita, S., & Tobinai, K. (2018). Targeting EZH2 with tazemetostat. The Lancet Oncology, 19(5), 586-587. https://doi.org/10.1016/S1470-2045(18)30149-9 - PubMed
  115. Margol, A. S., & Judkins, A. R. (2014). Pathology and diagnosis of SMARCB1-deficient tumors. Cancer Genetics, 207(9), 358-364. https://doi.org/10.1016/j.cancergen.2014.07.004 - PubMed
  116. Margueron, R., & Reinberg, D. (2011). The Polycomb complex PRC2 and its mark in life. Nature, 469(7330), 343-349. https://doi.org/10.1038/nature09784 - PubMed
  117. Martinez, A.-M., & Cavalli, G. (2006). The role of Polycomb group proteins in cell cycle regulation during development. Cell Cycle, 5(11), 1189-1197. https://doi.org/10.4161/cc.5.11.2781 - PubMed
  118. Margueron, R., Li, G., Sarma, K., Blais, A., Zavadil, A., Woodcock, C.L., Dynlacht, B.D., & Reinberg, D. (2008). Ezh1 and Ezh2 Maintain Repressive Chromatin through Different Mechanisms. Molecular Cell, 32(4), 503-518. https://doi.org/10.1016/j.molcel.2008.11.004. - PubMed
  119. Matsukawa, Y., Semba, S., Kato, H., Ito, A., Yanagihara, K., & Yokozaki, H. (2006). Expression of the enhancer of zeste homolog 2 is correlated with poor prognosis in human gastric cancer. Cancer Science, 97(6), 484-491. https://doi.org/10.1111/j.1349-7006.2006.00203.x - PubMed
  120. Medina, P. P., Carretero, J., Fraga, M. F., Esteller, M., Sidransky, D., & Sanchez-Cespedes, M. (2004). Genetic and epigenetic screening for gene alterations of the chromatin-remodeling factor, SMARCA4/BRG1, in lung tumors. Genes, Chromosomes and Cancer, 41(2), 170-177. https://doi.org/10.1002/gcc.20068 - PubMed
  121. Mikucki, M. E., Fisher, D. T., Matsuzaki, J., Skitzki, J. J., Gaulin, N. B., Muhitch, J. B., Ku, A. W., Frelinger, J. G., Odunsi, K., Gajewski, T. F., Luster, A. D., & Evans, S. S. (2015). Non-redundant requirement for CXCR3 signalling during tumoricidal T-cell trafficking across tumour vascular checkpoints. Nature Communications, 6, 7458. https://doi.org/10.1038/ncomms8458 - PubMed
  122. Modena, P., Lualdi, E., Facchinetti, F., Galli, L., Teixeira, M. R., Pilotti, S., & Sozzi, G. (2005). SMARCB1/INI1 tumor suppressor gene is frequently inactivated in Epithelioid sarcomas. Cancer Research, 65(10), 4012-4019. https://doi.org/10.1158/0008-5472.CAN-04-3050 - PubMed
  123. Mohammad, F., Weissmann, S., Leblanc, B., Pandey, D. P., Højfeldt, J. W., Comet, I., Zheng, C., Johansen, J. V., Rapin, N., Porse, B. T., Tvardovskiy, A., Jensen, O. N., Olaciregui, N. G., Lavarino, C., Suñol, M., de Torres, C., Mora, J., Carcaboso, A. M., & Helin, K. (2017). EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas. Nature Medicine, 23(4), 483-492. https://doi.org/10.1038/nm.4293 - PubMed
  124. Mohrmann, L., & Verrijzer, C. P. (2005). Composition and functional specificity of SWI2/SNF2 class chromatin remodeling complexes. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1681(2-3), 59-73. https://doi.org/10.1016/j.bbaexp.2004.10.005 - PubMed
  125. Morel, D., Almouzni, G., Soria, J.-C., & Postel-Vinay, S. (2016). Targeting chromatin defects in selected solid tumors based on oncogene addiction, synthetic lethality and epigenetic antagonism. Annals of Oncology, 28, 254-269. https://doi.org/10.1093/annonc/mdw552 - PubMed
  126. Morin, R., Johnson, N., Severson, T., Mungall, A. J., An, J., Paul, J., Boyle, M., Woolcock, B., Kuchenbauer, F., Yap, D., Humphries, R. K., Griffith, O., Shah, S. P., Corbett, R., Tam, A., Varhol, R., Smailus, D., Moksa, M., Zhao, Y., … Marra, M. A. (2009). Tyrosine 641 of the EZH2 oncogene is frequently mutated in follicular and diffuse large B-cell lymphomas of germinal center origin. Blood, 114(22), 139-139. https://doi.org/10.1182/blood.V114.22.139.139 - PubMed
  127. Morin, R. D., Johnson, N. A., Severson, T. M., Mungall, A. J., An, J., Goya, R., Paul, J. E., Boyle, M., Woolcock, B. W., Kuchenbauer, F., Yap, D., Humphries, R. K., Griffith, O. L., Shah, S., Zhu, H., Kimbara, M., Shashkin, P., Charlot, J. F., Tcherpakov, M., … Marra, M. A. (2010). Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nature Genetics, 42(2), 181-185. https://doi.org/10.1038/ng.518 - PubMed
  128. Morin, R. D., Mendez-Lago, M., Mungall, A. J., Goya, R., Mungall, K. L., Corbett, R. D., Johnson, N. A., Severson, T. M., Chiu, R., Field, M., Jackman, S., Krzywinski, M., Scott, D. W., Trinh, D. L., Tamura-Wells, J., Li, S., Firme, M. R., Rogic, S., Griffith, M., … Marra, M. A. (2011). Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature, 476(7360), 298-303. https://doi.org/10.1038/nature10351 - PubMed
  129. Muchardt, C., & Yaniv, M. (1993). A human homologue of Saccharomyces cerevisiae SNF2/SWI2 and Drosophila brm genes potentiates transcriptional activation by the glucocorticoid receptor. The EMBO Journal, 12(11), 4279-4290. - PubMed
  130. Muchardt, C., Sardet, C., Bourachot, B., Onufryk, C., & Yaniv, M. (1995). A human protein with homology to Saccharomyces cerevisiae SNF5 interacts with the potential helicase hbrm. Nucleic Acids Research, 23(7), 1127-1132. https://doi.org/10.1093/nar/23.7.1127 - PubMed
  131. Muchardt, C., & Yaniv, M. (1999). The mammalian SWI/SNF complex and the control of cell growth. Seminars in Cell & Developmental Biology, 10(2), 189-195. https://doi.org/10.1006/scdb.1999.0300 - PubMed
  132. Nagarsheth, N., Peng, D., Kryczek, I., Wu, K., Li, W., Zhao, E., Zhao, L., Wei, S., Frankel, T., Vatan, L., Szeliga, W., Dou, Y., Owens, S., Marquez, V., Tao, K., Huang, E., Wang, G., & Zou, W. (2016). PRC2 epigenetically silences Th1-type chemokines to suppress effector T-cell trafficking in Colon Cancer. Cancer Research, 76(2), 275-282. https://doi.org/10.1158/0008-5472.CAN-15-1938 - PubMed
  133. Nakagawa, S., Sakamoto, Y., Okabe, H., Hayashi, H., Hashimoto, D., Yokoyama, N., Tokunaga, R., Sakamoto, K., Kuroki, H., Mima, K., Beppu, T., & Baba, H. (2014). Epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin a inhibits the growth of cholangiocarcinoma cells. Oncology Reports, 31(2), 983-988. https://doi.org/10.3892/or.2013.2922 - PubMed
  134. Nargund, A. M., Osmanbeyoglu, H. U., Cheng, E. H., & Hsieh, J. J. (2017). SWI/SNF tumor suppressor gene PBRM1/BAF180 in human clear cell kidney cancer. Molecular & Cellular Oncology, 4(4), e1342747. https://doi.org/10.1080/23723556.2017.1342747 - PubMed
  135. Nasioudis, D., Chapman-Davis, E., Frey, M. K., Caputo, T. A., Witkin, S. S., & Holcomb, K. (2018). Small cell carcinoma of the ovary: A rare tumor with a poor prognosis. International Journal of Gynecologic Cancer, 28(5), 932-938. https://doi.org/10.1097/IGC.0000000000001243 - PubMed
  136. Neff, T., Sinha, A. U., Kluk, M. J., Zhu, N., Khattab, M. H., Stein, L., Xie, H., Orkin, S. H., & Armstrong, S. A. (2012). Polycomb repressive complex 2 is required for MLL-AF9 leukemia. Proceedings of the National Academy of Sciences, 109(13), 5028-5033. https://doi.org/10.1073/pnas.1202258109 - PubMed
  137. Neigeborn, L., & Carlson, M. (1984). Genes affecting the regulation of SUC2 gene expression by glucose repression in Saccharomyces cerevisiae. Genetics, 108(4), 845-858. - PubMed
  138. Nemes, K., & Frühwald, M. C. (2018). Emerging therapeutic targets for the treatment of malignant rhabdoid tumors. Expert Opinion on Therapeutic Targets, 22(4), 365-379. https://doi.org/10.1080/14728222.2018.1451839 - PubMed
  139. O'Carroll, D., Erhardt, S., Pagani, M., Barton, S. C., Surani, M. A., & Jenuwein, T. (2001). The Polycomb-group gene Ezh2 is required for early mouse development. Molecular and Cellular Biology, 21(13), 4330-4336. https://doi.org/10.1128/MCB.21.13.4330-4336.2001 - PubMed
  140. Oike, T., Ogiwara, H., Amornwichet, N., Nakano, T., & Kohno, T. (2014). Chromatin-regulating proteins as targets for cancer therapy. Journal of Radiation Research, 55(4), 613-628. https://doi.org/10.1093/jrr/rrt227 - PubMed
  141. O'Neil, N. J., Bailey, M. L., & Hieter, P. (2017). Synthetic lethality and cancer. Nature Reviews. Genetics, 18(10), 613-623. https://doi.org/10.1038/nrg.2017.47 - PubMed
  142. Pagliarini, R., Shao, W., & Sellers, W. R. (2015). Oncogene addiction: Pathways of therapeutic response, resistance, and road maps toward a cure. EMBO Reports, 16(3), 280-296. https://doi.org/10.15252/embr.201439949 - PubMed
  143. Pardoll, D. M. (2012). The blockade of immune checkpoints in cancer immunotherapy. Nature Reviews. Cancer, 12(4), 252-264. https://doi.org/10.1038/nrc3239 - PubMed
  144. Pasini, D., Bracken, A. P., Jensen, M. R., Denchi, E. L., & Helin, K. (2004). Suz12 is essential for mouse development and for EZH2 histone methyltransferase activity. The EMBO Journal, 23(20), 4061-4071. https://doi.org/10.1038/sj.emboj.7600402 - PubMed
  145. Peña-Llopis, S., Vega-Rubín-de-Celis, S., Liao, A., Leng, N., Pavía-Jiménez, A., Wang, S., Yamasaki, T., Zhrebker, L., Sivanand, S., Spence, P., Kinch, L., Hambuch, T., Jain, S., Lotan, Y., Margulis, V., Sagalowsky, A. I., Summerour, P. B., Kabbani, W., Wong, S. W. W., … Brugarolas, J. (2012). BAP1 loss defines a new class of renal cell carcinoma. Nature Genetics, 44(7), 751-759. https://doi.org/10.1038/ng.2323 - PubMed
  146. Peng, D., Kryczek, I., Nagarsheth, N., Zhao, L., Wei, S., Wang, W., Sun, Y., Zhao, E., Vatan, L., Szeliga, W., Kotarski, J., Tarkowski, R., Dou, Y., Cho, K., Hensley-Alford, S., Munkarah, A., Liu, R., & Zou, W. (2015). Epigenetic silencing of T H 1-type chemokines shapes tumour immunity and immunotherapy. Nature, 527(7577), 249-253. https://doi.org/10.1038/nature15520 - PubMed
  147. Pengelly, A. R., Kalb, R., Finkl, K., & Müller, J. (2015). Transcriptional repression by PRC1 in the absence of H2A monoubiquitylation. Genes & Development, 29(14), 1487-1492. https://doi.org/10.1101/gad.265439.115 - PubMed
  148. Pfister, S. X., & Ashworth, A. (2017). Marked for death: Targeting epigenetic changes in cancer. Nature Reviews Drug Discovery, 16(4), 241-263. https://doi.org/10.1038/nrd.2016.256 - PubMed
  149. Phelan, M. L., Sif, S., Narlikar, G. J., & Kingston, R. E. (1999). Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits. Molecular Cell, 3(2), 247-253. - PubMed
  150. Pugh, T. J., Weeraratne, S. D., Archer, T. C., Pomeranz Krummel, D. A., Auclair, D., Bochicchio, J., Carneiro, M. O., Carter, S. L., Cibulskis, K., Erlich, R. L., Greulich, H., Lawrence, M. S., Lennon, N. J., McKenna, A., Meldrim, J., Ramos, A. H., Ross, M. G., Russ, C., Shefler, E., … Cho, Y.-J. (2012). Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature, 488(7409), 106-110. https://doi.org/10.1038/nature11329 - PubMed
  151. Puppe, J., Opdam, M., Schouten, P. C., Jóźwiak, K., Lips, E., Severson, T., van de Ven, M., Brambillasca, C., Bouwman, P., van Tellingen, O., Bernards, R., Wesseling, J., Eichler, C., Thangarajah, F., Malter, W., Pandey, G. K., Ozretić, L., Caldas, C., van Lohuizen, M., … Jonkers, J. (2019). EZH2 is overexpressed in BRCA1 -like breast tumors and predictive for sensitivity to high-dose platinum-based chemotherapy. Clinical Cancer Research, 25(14), 4351-4362. https://doi.org/10.1158/1078-0432.CCR-18-4024 - PubMed
  152. Puschendorf, M., Terranova, R., Boutsma, E., Mao, X., Isono, K., Brykczynska, U., Kolb, C., Otte, A. P., Koseki, H., Orkin, S. H., van Lohuizen, M., & Peters, A. H. F. M. (2008). PRC1 and Suv39h specify parental asymmetry at constitutive heterochromatin in early mouse embryos. Nature Genetics, 40(4), 411-420. https://doi.org/10.1038/ng.99 - PubMed
  153. Qi, Y., Wang, D., Wang, D., Jin, T., Yang, L., Wu, H., Li, Y., Zhao, J., Du, F., Song, M., & Wang, R. (2016). HEDD: The human epigenetic drug database. Database: The Journal of Biological Databases and Curation, 2016, baw159. https://doi.org/10.1093/database/baw159 - PubMed
  154. Ramakrishnan, S., Granger, V., Rak, M., Hu, Q., Attwood, K., Aquila, L., Krishnan, N., Osiecki, R., Azabdaftari, G., Guru, K., Chatta, G., Gueron, G., McNally, L., Ohm, J., Wang, J., & Woloszynska, A. (2019). Inhibition of EZH2 induces NK cell-mediated differentiation and death in muscle-invasive bladder cancer. Cell Death and Differentiation., 26, 2100-2114. https://doi.org/10.1038/s41418-019-0278-9 - PubMed
  155. Ramos, P., Karnezis, A. N., Craig, D. W., Sekulic, A., Russell, M. L., Hendricks, W. P. D., Corneveaux, J. J., Barrett, M. T., Shumansky, K., Yang, Y., Shah, S. P., Prentice, L. M., Marra, M. A., Kiefer, J., Zismann, V. L., McEachron, T. A., Salhia, B., Prat, J., D'Angelo, E., … Trent, J. M. (2014). Small cell carcinoma of the ovary, hypercalcemic type, displays frequent inactivating germline and somatic mutations in SMARCA4. Nature Genetics, 46(5), 427-429. https://doi.org/10.1038/ng.2928 - PubMed
  156. Ramos, P., Karnezis, A. N., Hendricks, W. P. D., Wang, Y., Tembe, W., Zismann, V. L., Legendre, C., Liang, W. S., Russell, M. L., Craig, D. W., Farley, J. H., Monk, B. J., Anthony, S. P., Sekulic, A., Cunliffe, H. E., Huntsman, D. G., & Trent, J. M. (2014). Loss of the tumor suppressor SMARCA4 in small cell carcinoma of the ovary, hypercalcemic type (SCCOHT). Rare Diseases, 2(1), e967148. https://doi.org/10.4161/2167549X.2014.967148 - PubMed
  157. Research, A. A. for C. (2010). Correction: Conditional regulatory T-cell depletion releases adaptive immunity preventing carcinogenesis and suppressing established tumor growth. Cancer Research, 70(23), 10014. https://doi.org/10.1158/0008-5472.CAN-10-3910 - PubMed
  158. Reyes, J. C., Barra, J., Muchardt, C., Camus, A., Babinet, C., & Yaniv, M. (1998). Altered control of cellular proliferation in the absence of mammalian brahma (SNF2alpha). The EMBO Journal, 17(23), 6979-6991. https://doi.org/10.1093/emboj/17.23.6979 - PubMed
  159. Ribeiro-Silva, C., Vermeulen, W., & Lans, H. (2019). SWI/SNF: Complex complexes in genome stability and cancer. DNA Repair, 77, 87-95. https://doi.org/10.1016/j.dnarep.2019.03.007 - PubMed
  160. Ringrose, L. (2006). Polycomb, trithorax and the decision to differentiate. BioEssays, 28(4), 330-334. https://doi.org/10.1002/bies.20388 - PubMed
  161. Ringrose, L. (2007). Polycomb comes of age: Genome-wide profiling of target sites. Current Opinion in Cell Biology, 19(3), 290-297. https://doi.org/10.1016/j.ceb.2007.04.010 - PubMed
  162. Rosenberg, S. A., Restifo, N. P., Yang, J. C., Morgan, R. A., & Dudley, M. E. (2008). Adoptive cell transfer: A clinical path to effective cancer immunotherapy. Nature Reviews. Cancer, 8(4), 299-308. https://doi.org/10.1038/nrc2355 - PubMed
  163. Sakaguchi, S., Yamaguchi, T., Nomura, T., & Ono, M. (2008). Regulatory T cells and immune tolerance. Cell, 133(5), 775-787. https://doi.org/10.1016/j.cell.2008.05.009 - PubMed
  164. Sarmento, O. F., Svingen, P. A., Xiong, Y., Sun, Z., Bamidele, A. O., Mathison, A. J., Smyrk, T. C., Nair, A. A., Gonzalez, M. M., Sagstetter, M. R., Baheti, S., McGovern, D. P. B., Friton, J. J., Papadakis, K. A., Gautam, G., Xavier, R. J., Urrutia, R. A., & Faubion, W. A. (2017). The role of the histone Methyltransferase enhancer of Zeste homolog 2 (EZH2) in the Pathobiological mechanisms underlying inflammatory bowel disease (IBD). The Journal of Biological Chemistry, 292(2), 706-722. https://doi.org/10.1074/jbc.M116.749663 - PubMed
  165. Sasaki, D., Imaizumi, Y., Hasegawa, H., Osaka, A., Tsukasaki, K., Choi, Y. L., Mano, H., Marquez, V. E., Hayashi, T., Yanagihara, K., Moriwaki, Y., Miyazaki, Y., Kamihira, S., & Yamada, Y. (2011). Overexpression of enhancer of zeste homolog 2 with trimethylation of lysine 27 on histone H3 in adult T-cell leukemia/lymphoma as a target for epigenetic therapy. Haematologica, 96(5), 712-719. https://doi.org/10.3324/haematol.2010.028605 - PubMed
  166. Sasaki, M., Ikeda, H., Itatsu, K., Yamaguchi, J., Sawada, S., Minato, H., Ohta, T., & Nakanuma, Y. (2008). The overexpression of polycomb group proteins Bmi1 and EZH2 is associated with the progression and aggressive biological behavior of hepatocellular carcinoma. Laboratory Investigation, 88(8), 873-882. https://doi.org/10.1038/labinvest.2008.52 - PubMed
  167. Schoenfelder, S., Sugar, R., Dimond, A., Javierre, B.-M., Armstrong, H., Mifsud, B., Dimitrova, E., Matheson, L., Tavares-Cadete, F., Furlan-Magaril, M., Segonds-Pichon, A., Jurkowski, W., Wingett, S. W., Tabbada, K., Andrews, S., Herman, B., LeProust, E., Osborne, C. S., Koseki, H., … Elderkin, S. (2015). Polycomb repressive complex PRC1 spatially constrains the mouse embryonic stem cell genome. Nature Genetics, 47(10), 1179-1186. https://doi.org/10.1038/ng.3393 - PubMed
  168. Scholler, J., Brady, T. L., Binder-Scholl, G., Hwang, W.-T., Plesa, G., Hege, K. M., Vogel, A. N., Kalos, M., Riley, J. L., Deeks, S. G., Mitsuyasu, R. T., Bernstein, W. B., Aronson, N. E., Levine, B. L., Bushman, F. D., & June, C. H. (2012). Decade-Long safety and function of retroviral-modified chimeric antigen receptor T cells. Science Translational Medicine, 4(132), 132ra53-132ra53. https://doi.org/10.1126/scitranslmed.3003761 - PubMed
  169. Schreiber, R. D., Old, L. J., & Smyth, M. J. (2011). Cancer Immunoediting: Integrating Immunity's roles in Cancer suppression and promotion. Science, 331(6024), 1565-1570. https://doi.org/10.1126/science.1203486 - PubMed
  170. Schuettengruber, B., Bourbon, H.-M., Di Croce, L., & Cavalli, G. (2017). Genome regulation by Polycomb and Trithorax: 70 years and counting. Cell, 171(1), 34-57. https://doi.org/10.1016/j.cell.2017.08.002 - PubMed
  171. Schuettengruber, B., & Cavalli, G. (2009). Recruitment of Polycomb group complexes and their role in the dynamic regulation of cell fate choice. Development, 136(21), 3531-3542. https://doi.org/10.1242/dev.033902 - PubMed
  172. Schwartz, Y. B., Kahn, T. G., Nix, D. A., Li, X.-Y., Bourgon, R., Biggin, M., & Pirrotta, V. (2006). Genome-wide analysis of Polycomb targets in Drosophila melanogaster. Nature Genetics, 38(6), 700-705. https://doi.org/10.1038/ng1817 - PubMed
  173. Seidel, J. A., Otsuka, A., & Kabashima, K. (2018). Anti-PD-1 and anti-CTLA-4 therapies in Cancer: Mechanisms of action, efficacy, and limitations. Frontiers in Oncology, 8, 86. https://doi.org/10.3389/fonc.2018.00086 - PubMed
  174. Serresi, M., Gargiulo, G., Proost, N., Siteur, B., Cesaroni, M., Koppens, M., Xie, H., Sutherland, K. D., Hulsman, D., Citterio, E., Orkin, S., Berns, A., & van Lohuizen, M. (2016). Polycomb repressive complex 2 is a barrier to KRAS-driven inflammation and epithelial-Mesenchymal transition in non-small-cell lung Cancer. Cancer Cell, 29(1), 17-31. https://doi.org/10.1016/j.ccell.2015.12.006 - PubMed
  175. Shain, A. H., & Pollack, J. R. (2013). The Spectrum of SWI/SNF mutations, ubiquitous in human cancers. PLoS One, 8(1), e55119. https://doi.org/10.1371/journal.pone.0055119 - PubMed
  176. Shao, Z., Raible, F., Mollaaghababa, R., Guyon, J. R., Wu, C., Bender, W., & Kingston, R. E. (1999). Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell, 98(1), 37-46. https://doi.org/10.1016/S0092-8674(00)80604-2 - PubMed
  177. Shaver, S., Casas-Mollano, J. A., Cerny, R. L., & Cerutti, H. (2010). Origin of the polycomb repressive complex 2 and gene silencing by an E(z) homolog in the unicellular alga Chlamydomonas. Epigenetics, 5(4), 301-312. https://doi.org/10.4161/epi.5.4.11608 - PubMed
  178. Shen, X., Liu, Y., Hsu, Y.-J., Fujiwara, Y., Kim, J., Mao, X., Yuan, G.-C., & Orkin, S. H. (2008). EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing Pluripotency. Molecular Cell, 32(4), 491-502. https://doi.org/10.1016/j.molcel.2008.10.016 - PubMed
  179. Shi, J., Wang, E., Milazzo, J. P., Wang, Z., Kinney, J. B., & Vakoc, C. R. (2015). Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nature Biotechnology, 33(6), 661-667. https://doi.org/10.1038/nbt.3235 - PubMed
  180. Shinozaki-Ushiku, A., Ushiku, T., Morita, S., Anraku, M., Nakajima, J., & Fukayama, M. (2017). Diagnostic utility of BAP1 and EZH2 expression in malignant mesothelioma. Histopathology, 70(5), 722-733. https://doi.org/10.1111/his.13123 - PubMed
  181. Skinner, M. K. (2011). Role of epigenetics in developmental biology and transgenerational inheritance. Birth Defects Research Part C: Embryo Today: Reviews, 93(1), 51-55. https://doi.org/10.1002/bdrc.20199 - PubMed
  182. Smits, A. H., Jansen, P. W. T. C., Poser, I., Hyman, A. A., & Vermeulen, M. (2013). Stoichiometry of chromatin-associated protein complexes revealed by label-free quantitative mass spectrometry-based proteomics. Nucleic Acids Research, 41(1), e28. https://doi.org/10.1093/nar/gks941 - PubMed
  183. Son, J., Shen, S. S., Margueron, R., & Reinberg, D. (2013). Nucleosome-binding activities within JARID2 and EZH1 regulate the function of PRC2 on chromatin. Genes & Development, 27(24), 2663-2677. https://doi.org/10.1101/gad.225888.113 - PubMed
  184. Stanton, B. Z., Hodges, C., Calarco, J. P., Braun, S. M. G., Ku, W. L., Kadoch, C., Zhao, K., & Crabtree, G. R. (2017). Smarca4 ATPase mutations disrupt direct eviction of PRC1 from chromatin. Nature Genetics, 49(2), 282-288. https://doi.org/10.1038/ng.3735 - PubMed
  185. Stathis, A., & Bertoni, F. (2018). BET proteins as targets for anticancer treatment. Cancer Discovery, 8(1), 24-36. https://doi.org/10.1158/2159-8290.CD-17-0605 - PubMed
  186. Stern, M., Jensen, R., & Herskowitz, I. (1984). Five SW genes are required for expression HO gene in yeast. Journal of Molecular Biology, 178(4), 853-868. - PubMed
  187. Sudo, T., Utsunomiya, T., Mimori, K., Nagahara, H., Ogawa, K., Inoue, H., Wakiyama, S., Fujita, H., Shirouzu, K., & Mori, M. (2005). Clinicopathological significance of EZH2 mRNA expression in patients with hepatocellular carcinoma. British Journal of Cancer, 92(9), 1754-1758. https://doi.org/10.1038/sj.bjc.6602531 - PubMed
  188. Sugiyama, T., Kamura, T., Kigawa, J., Terakawa, N., Kikuchi, Y., Kita, T., Suzuki, M., Sato, I., & Taguchi, K. (2000). Clinical characteristics of clear cell carcinoma of the ovary: A distinct histologic type with poor prognosis and resistance to platinum-based chemotherapy. Cancer, 88(11), 2584-2589. - PubMed
  189. Sun, C., Zhao, C., Li, S., Wang, J., Zhou, Q., Sun, J., Ding, Q., Liu, M., & Ding, G. (2018). EZH2 expression is increased in BAP1-mutant renal clear cell carcinoma and is related to poor prognosis. Journal of Cancer, 9(20), 3787-3796. https://doi.org/10.7150/jca.26275 - PubMed
  190. Tamkun, J. W., Deuring, R., Scott, M. P., Kissinger, M., Pattatucci, A. M., Kaufman, T. C., & Kennison, J. A. (1992). Brahma: A regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2SWI2. Cell, 68(3), 561-572. https://doi.org/10.1016/0092-8674(92)90191-E - PubMed
  191. Tang, H., Qiao, J., & Fu, Y.-X. (2016). Immunotherapy and tumor microenvironment. Cancer Letters, 370(1), 85-90. https://doi.org/10.1016/j.canlet.2015.10.009 - PubMed
  192. Teng, M. W. L., Swann, J. B., von Scheidt, B., Sharkey, J., Zerafa, N., McLaughlin, N., Yamaguchi, T., Sakaguchi, S., Darcy, P. K., & Smyth, M. J. (2010). Multiple antitumor mechanisms downstream of prophylactic regulatory T-cell depletion. Cancer Research, 70(7), 2665-2674. https://doi.org/10.1158/0008-5472.CAN-09-1574 - PubMed
  193. The Cancer Genome Atlas Research Network. (2013). Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature, 499(7456), 43-49. https://doi.org/10.1038/nature12222 - PubMed
  194. The Cancer Genome Atlas Research Network. (2014). Comprehensive molecular profiling of lung adenocarcinoma. Nature, 511(7511), 543-550. https://doi.org/10.1038/nature13385 - PubMed
  195. Tiffen, J., Gallagher, S. J., & Hersey, P. (2015). EZH2: An emerging role in melanoma biology and strategies for targeted therapy. Pigment Cell & Melanoma Research, 28(1), 21-30. https://doi.org/10.1111/pcmr.12280 - PubMed
  196. Tiffen, J. C., Gunatilake, D., Gallagher, S. J., Gowrishankar, K., Heinemann, A., Cullinane, C., Dutton-Regester, K., Pupo, G. M., Strbenac, D., Yang, J. Y., Madore, J., Mann, G. J., Hayward, N. K., McArthur, G. A., Filipp, F. V., & Hersey, P. (2015). Targeting activating mutations of EZH2 leads to potent cell growth inhibition in human melanoma by derepression of tumor suppressor genes. Oncotarget, 6(29), 27023-27036. https://doi.org/10.18632/oncotarget.4809 - PubMed
  197. Toll, A. D., Dasgupta, A., Potoczek, M., Yeo, C. J., Kleer, C. G., Brody, J. R., & Witkiewicz, A. K. (2010). Implications of enhancer of zeste homologue 2 expression in pancreatic ductal adenocarcinoma. Human Pathology, 41(9), 1205-1209. https://doi.org/10.1016/j.humpath.2010.03.004 - PubMed
  198. Topalian, S. L., Drake, C. G., & Pardoll, D. M. (2015). Immune checkpoint blockade: A common denominator approach to cancer therapy. Cancer Cell, 27(4), 450-461. https://doi.org/10.1016/j.ccell.2015.03.001 - PubMed
  199. Tsukiyama, T. (2002). The in vivo functions of ATP-dependent chromatin-remodelling factors. Nature Reviews Molecular Cell Biology, 3(6), 422-429. https://doi.org/10.1038/nrm828 - PubMed
  200. Tumeh, P. C., Harview, C. L., Yearley, J. H., Shintaku, I. P., Taylor, E. J. M., Robert, L., Chmielowski, B., Spasic, M., Henry, G., Ciobanu, V., West, A. N., Carmona, M., Kivork, C., Seja, E., Cherry, G., Gutierrez, A. J., Grogan, T. R., Mateus, C., Tomasic, G., … Ribas, A. (2014). PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature, 515(7528), 568-571. https://doi.org/10.1038/nature13954 - PubMed
  201. Ulbright, T. M., Roth, L. M., Stehman, F. B., Talerman, A., & Senekjian, E. K. (1987). Poorly differentiated (small cell) carcinoma of the ovary in young women. Human Pathology, 18(2), 175-184. https://doi.org/10.1016/S0046-8177(87)80336-2 - PubMed
  202. Vanan, M. I., & Eisenstat, D. D. (2015). DIPG in children - What can we learn from the past? Frontiers in Oncology, 5, 237. https://doi.org/10.3389/fonc.2015.00237 - PubMed
  203. Varambally, S., Dhanasekaran, S. M., Zhou, M., Barrette, T. R., Kumar-Sinha, C., Sanda, M. G., Ghosh, D., Pienta, K. J., Sewalt, R. G. A. B., Otte, A. P., Rubin, M. A., & Chinnaiyan, A. M. (2002). The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature, 419(6907), 624-629. https://doi.org/10.1038/nature01075 - PubMed
  204. Varela, I., Tarpey, P., Raine, K., Huang, D., Ong, C. K., Stephens, P., Davies, H., Jones, D., Lin, M.-L., Teague, J., Bignell, G., Butler, A., Cho, J., Dalgliesh, G. L., Galappaththige, D., Greenman, C., Hardy, C., Jia, M., Latimer, C., … Futreal, P. A. (2011). Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature, 469(7331), 539-542. https://doi.org/10.1038/nature09639 - PubMed
  205. Vaswani, R. G., Gehling, V. S., Dakin, L. A., Cook, A. S., Nasveschuk, C. G., Duplessis, M., Iyer, P., Balasubramanian, S., Zhao, F., Good, A. C., Campbell, R., Lee, C., Cantone, N., Cummings, R. T., Normant, E., Bellon, S. F., Albrecht, B. K., Harmange, J.-C., Trojer, P., … Gamblin, S. J. (2016). Identification of ( R )- N -([4-Methoxy-6-methyl-2-oxo-1,2-dihydropyridin-3-yl]methyl)-2-methyl-1-(1-(1-[2,2,2-trifluoroethyl]piperidin-4-yl)ethyl)-1 H -indole-3-carboxamide (CPI-1205), a potent and selective inhibitor of histone Methyltransferase EZH2, suitable for phase I clinical trials for B-cell lymphomas. Journal of Medicinal Chemistry, 59(21), 9928-9941. https://doi.org/10.1021/acs.jmedchem.6b01315 - PubMed
  206. Versteege, I., Sévenet, N., Lange, J., Rousseau-Merck, M.-F., Ambros, P., Handgretinger, R., Aurias, A., & Delattre, O. (1998). Truncating mutations of hSNF5/INI1 in aggressive paediatric cancer. Nature, 394(6689), 203-206. https://doi.org/10.1038/28212 - PubMed
  207. Wang, D., Quiros, J., Mahuron, K., Pai, C.-C., Ranzani, V., Young, A., Silveria, S., Harwin, T., Abnousian, A., Pagani, M., Rosenblum, M. D., Van Gool, F., Fong, L., Bluestone, J. A., & DuPage, M. (2018). Targeting EZH2 reprograms Intratumoral regulatory T cells to enhance Cancer immunity. Cell Reports, 23(11), 3262-3274. https://doi.org/10.1016/j.celrep.2018.05.050 - PubMed
  208. Wang, H., Wang, L., Erdjument-Bromage, H., Vidal, M., Tempst, P., Jones, R. S., & Zhang, Y. (2004). Role of histone H2A ubiquitination in Polycomb silencing. Nature, 431(7010), 873-878. https://doi.org/10.1038/nature02985 - PubMed
  209. Wang, K., Kan, J., Yuen, S. T., Shi, S. T., Chu, K. M., Law, S., Chan, T. L., Kan, Z., Chan, A. S. Y., Tsui, W. Y., Lee, S. P., Ho, S. L., Chan, A. K. W., Cheng, G. H. W., Roberts, P. C., Rejto, P. A., Gibson, N. W., Pocalyko, D. J., Mao, M., … Leung, S. Y. (2011). Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nature Genetics, 43(12), 1219-1223. https://doi.org/10.1038/ng.982 - PubMed
  210. Wang, P., Song, X., Cao, D., Cui, K., Wang, J., Utpatel, K., Shang, R., Wang, H., Che, L., Evert, M., Zhao, K., Calvisi, D. F., & Chen, X. (2020). Oncogene-dependent function of BRG1 in hepatocarcinogenesis. Cell Death & Disease, 11(2), 91. https://doi.org/10.1038/s41419-020-2289-3 - PubMed
  211. Wang, W., Qin, J.-J., Voruganti, S., Nag, S., Zhou, J., & Zhang, R. (2015). Polycomb group (PcG) proteins and human cancers: Multifaceted functions and therapeutic implications. Medicinal Research Reviews, 35(6), 1220-1267. https://doi.org/10.1002/med.21358 - PubMed
  212. Wang, X., Brea, L. T., & Yu, J. (2019). Immune modulatory functions of EZH2 in the tumor microenvironment: Implications in cancer immunotherapy. American Journal of Clinical and Experimental Urology, 7(2), 85-91. - PubMed
  213. Wang, Y., Chen, S. Y., Colborne, S., Lambert, G., Shin, C. Y., Santos, N. D., Orlando, K. A., Lang, J. D., Hendricks, W. P. D., Bally, M. B., Karnezis, A. N., Hass, R., Underhill, T. M., Morin, G. B., Trent, J. M., Weissman, B. E., & Huntsman, D. G. (2018). Histone Deacetylase inhibitors synergize with catalytic inhibitors of EZH2 to exhibit antitumor activity in small cell carcinoma of the ovary, Hypercalcemic type. Molecular Cancer Therapeutics, 17(12), 2767-2779. https://doi.org/10.1158/1535-7163.MCT-18-0348 - PubMed
  214. Wang, Y., Chen, S. Y., Karnezis, A. N., Colborne, S., Santos, N. D., Lang, J. D., Hendricks, W. P., Orlando, K. A., Yap, D., Kommoss, F., Bally, M. B., Morin, G. B., Trent, J. M., Weissman, B. E., & Huntsman, D. G. (2017). The histone methyltransferase EZH2 is a therapeutic target in small cell carcinoma of the ovary, hypercalcaemic type. The Journal of Pathology, 242(3), 371-383. https://doi.org/10.1002/path.4912 - PubMed
  215. Wasenang, W., Puapairoj, A., Settasatian, C., Proungvitaya, S., & Limpaiboon, T. (2019). Overexpression of polycomb repressive complex 2 key components EZH2/SUZ12/EED as an unfavorable prognostic marker in cholangiocarcinoma. Pathology - Research and Practice, 215(7), 152451. https://doi.org/10.1016/j.prp.2019.152451 - PubMed
  216. Weikert, S., Christoph, F., Köllermann, J., Müller, M., Schrader, M., Miller, K., & Krause, H. (2005). Expression levels of the EZH2 polycomb transcriptional repressor correlate with aggressiveness and invasive potential of bladder carcinomas. International Journal of Molecular Medicine., 16, (2), 349-353. https://doi.org/10.3892/ijmm.16.2.349 - PubMed
  217. Werner, R. J., Kelly, A. D., & Issa, J.-P. J. (2017). Epigenetics and precision oncology. The Cancer Journal, 23(5), 262-269. https://doi.org/10.1097/PPO.0000000000000281 - PubMed
  218. Wiegand, K. C., Shah, S. P., Al-Agha, O. M., Zhao, Y., Tse, K., Zeng, T., Senz, J., McConechy, M. K., Anglesio, M. S., Kalloger, S. E., Yang, W., Heravi-Moussavi, A., Giuliany, R., Chow, C., Fee, J., Zayed, A., Prentice, L., Melnyk, N., Turashvili, G., … Huntsman, D. G. (2010). ARID1A mutations in endometriosis-associated ovarian carcinomas. The New England Journal of Medicine, 363(16), 1532-1543. https://doi.org/10.1056/NEJMoa1008433 - PubMed
  219. Wilson, B. G., & Roberts, C. W. M. (2011). SWI/SNF nucleosome remodellers and cancer. Nature Reviews Cancer, 11(7), 481-492. https://doi.org/10.1038/nrc3068 - PubMed
  220. Wilson, B. G., Wang, X., Shen, X., McKenna, E. S., Lemieux, M. E., Cho, Y.-J., Koellhoffer, E. C., Pomeroy, S. L., Orkin, S. H., & Roberts, C. W. M. (2010). Epigenetic antagonism between Polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell, 18(4), 316-328. https://doi.org/10.1016/j.ccr.2010.09.006 - PubMed
  221. Witkowski, L., Carrot-Zhang, J., Albrecht, S., Fahiminiya, S., Hamel, N., Tomiak, E., Grynspan, D., Saloustros, E., Nadaf, J., Rivera, B., Gilpin, C., Castellsagué, E., Silva-Smith, R., Plourde, F., Wu, M., Saskin, A., Arseneault, M., Karabakhtsian, R. G., Reilly, E. A., … Foulkes, W. D. (2014). Germline and somatic SMARCA4 mutations characterize small cell carcinoma of the ovary, hypercalcemic type. Nature Genetics, 46(5), 438-443. https://doi.org/10.1038/ng.2931 - PubMed
  222. Wong, A. K., Shanahan, F., Chen, Y., Lian, L., Ha, P., Hendricks, K., Ghaffari, S., Iliev, D., Penn, B., Woodland, A. M., Smith, R., Salada, G., Carillo, A., Laity, K., Gupte, J., Swedlund, B., Tavtigian, S. V., Teng, D. H., & Lees, E. (2000). BRG1, a component of the SWI-SNF complex, is mutated in multiple human tumor cell lines. Cancer Research, 60(21), 6171-6177. - PubMed
  223. Wu, Q., Lian, J. B., Stein, J. L., Stein, G. S., Nickerson, J. A., & Imbalzano, A. N. (2017). The BRG1 ATPase of human SWI/SNF chromatin remodeling enzymes as a driver of cancer. Epigenomics, 9(6), 919-931. https://doi.org/10.2217/epi-2017-0034 - PubMed
  224. Wu, Y., Li, J., Kaboli, P. J., Shen, J., Wu, X., Zhao, Y., Ji, H., Du, F., Zhou, Y., Wang, Y., Zhang, H., Yin, J., Wen, Q., Cho, C. H., Li, M., & Xiao, Z. (2020). Natural killer cells as a double-edged sword in Cancer immunotherapy: A comprehensive review from cytokine therapy to adoptive cell immunotherapy. Pharmacological Research, 155, 104691. https://doi.org/10.1016/j.phrs.2020.104691 - PubMed
  225. Xiao, G., Jin, L.-L., Liu, C.-Q., Wang, Y.-C., Meng, Y.-M., Zhou, Z.-G., Chen, J., Yu, X.-J., Zhang, Y.-J., Xu, J., & Zheng, L. (2019). EZH2 negatively regulates PD-L1 expression in hepatocellular carcinoma. Journal for Immunotherapy of Cancer, 7(1), 300. https://doi.org/10.1186/s40425-019-0784-9 - PubMed
  226. Xiong, Y., Khanna, S., Grzenda, A. L., Sarmento, O. F., Svingen, P. A., Lomberk, G. A., Urrutia, R. A., & Faubion, W. A. (2012). Polycomb antagonizes p300/CREB-binding protein-associated factor to silence FOXP3 in a Kruppel-like factor-dependent manner. The Journal of Biological Chemistry, 287(41), 34372-34385. https://doi.org/10.1074/jbc.M111.325332 - PubMed
  227. Yamaguchi, H., & Hung, M.-C. (2014). Regulation and role of EZH2 in Cancer. Cancer Research and Treatment, 46(3), 209-222. https://doi.org/10.4143/crt.2014.46.3.209 - PubMed
  228. Yang, X.-P., Jiang, K., Hirahara, K., Vahedi, G., Afzali, B., Sciume, G., Bonelli, M., Sun, H.-W., Jankovic, D., Kanno, Y., Sartorelli, V., O'Shea, J. J., & Laurence, A. (2015). EZH2 is crucial for both differentiation of regulatory T cells and T effector cell expansion. Scientific Reports, 5, 10643. https://doi.org/10.1038/srep10643 - PubMed
  229. Yin, J., Leavenworth, J. W., Li, Y., Luo, Q., Xie, H., Liu, X., Huang, S., Yan, H., Fu, Z., Zhang, L. Y., Zhang, L., Hao, J., Wu, X., Deng, X., Roberts, C. W. M., Orkin, S. H., Cantor, H., & Wang, X. (2015). Ezh2 regulates differentiation and function of natural killer cells through histone methyltransferase activity. Proceedings of the National Academy of Sciences, 112(52), 15988-15993. https://doi.org/10.1073/pnas.1521740112 - PubMed
  230. Young, R., Oliva, E., & Cully, R. (1994). Small cell carcinoma of the ovary, hypercalcemic type. A clinicopathological analysis of 150 cases. The American Journal of Surgical Pathology, 18, 1102-1116. - PubMed
  231. Yu, H., Simons, D. L., Segall, I., Carcamo-Cavazos, V., Schwartz, E. J., Yan, N., Zuckerman, N. S., Dirbas, F. M., Johnson, D. L., Holmes, S. P., & Lee, P. P. (2012). PRC2/EED-EZH2 complex is up-regulated in breast Cancer lymph node metastasis compared to primary tumor and correlates with tumor proliferation in situ. PLoS One, 7(12), e51239. https://doi.org/10.1371/journal.pone.0051239 - PubMed
  232. Zhang, Q., Han, Q., Zi, J., Ma, J., Song, H., Tian, Y., McGrath, M., Song, C., & Ge, Z. (2019). Mutations in EZH2 are associated with poor prognosis for patients with myeloid neoplasms. Genes & Diseases, 6(3), 276-281. https://doi.org/10.1016/j.gendis.2019.05.001 - PubMed
  233. Zhang, Y., Dong, W., Zhu, J., Wang, L., Wu, X., & Shan, H. (2017). Combination of EZH2 inhibitor and BET inhibitor for treatment of diffuse intrinsic pontine glioma. Cell & Bioscience, 7, 56. https://doi.org/10.1186/s13578-017-0184-0 - PubMed
  234. Zhang, Y., Kinkel, S., Maksimovic, J., Bandala-Sanchez, E., Tanzer, M. C., Naselli, G., Zhang, J.-G., Zhan, Y., Lew, A. M., Silke, J., Oshlack, A., Blewitt, M. E., & Harrison, L. C. (2014). The polycomb repressive complex 2 governs life and death of peripheral T cells. Blood, 124(5), 737-749. https://doi.org/10.1182/blood-2013-12-544106 - PubMed
  235. Zhao, E., Maj, T., Kryczek, I., Li, W., Wu, K., Zhao, L., Wei, S., Crespo, J., Wan, S., Vatan, L., Szeliga, W., Shao, I., Wang, Y., Liu, Y., Varambally, S., Chinnaiyan, A. M., Welling, T. H., Marquez, V., Kotarski, J., … Zou, W. (2016). Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nature Immunology, 17(1), 95-103. https://doi.org/10.1038/ni.3313 - PubMed
  236. Zhao, Y., Wang, X., Wu, W., Long, H., Huang, J., Wang, Z., Li, T., Tang, S., Zhu, B., & Chen, D. (2019). EZH2 regulates PD-L1 expression via HIF-1α in non-small cell lung cancer cells. Biochemical and Biophysical Research Communications, 517(2), 201-209. https://doi.org/10.1016/j.bbrc.2019.07.039 - PubMed
  237. Zhou, L., Mudianto, T., Ma, X., Riley, R., & Uppaluri, R. (2019). Targeting EZH2 enhances antigen presentation, antitumor immunity, and circumvents anti-PD-1 resistance in head and neck Cancer. Clinical Cancer Research., 26, 290-300. https://doi.org/10.1158/1078-0432.CCR-19-1351 - PubMed
  238. Zingg, D., Arenas-Ramirez, N., Sahin, D., Rosalia, R. A., Antunes, A. T., Haeusel, J., Sommer, L., & Boyman, O. (2017). The histone Methyltransferase Ezh2 controls mechanisms of adaptive resistance to tumor immunotherapy. Cell Reports, 20(4), 854-867. https://doi.org/10.1016/j.celrep.2017.07.007 - PubMed

Publication Types

Grant support