Display options
Share it on

Hum Mutat. 2021 May;42(5):506-519. doi: 10.1002/humu.24179. Epub 2021 Apr 01.

Biallelic hypomorphic variants in ALDH1A2 cause a novel lethal human multiple congenital anomaly syndrome encompassing diaphragmatic, pulmonary, and cardiovascular defects.

Human mutation

Sarah J Beecroft, Marcos Ayala, George McGillivray, Vikas Nanda, Emanuele Agolini, Antonio Novelli, Maria C Digilio, Andrea Dotta, Rosalba Carrozzo, Joshua Clayton, Lydia Gaffney, Catriona A McLean, Jessica Ng, Nigel G Laing, Paul Matteson, James Millonig, Gianina Ravenscroft

Affiliations

  1. Faculty of Health and Medical Sciences, Centre of Medical Research, Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, Western Australia, Australia.
  2. Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey, USA.
  3. Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Royal Women's Hospital, Melbourne, Australia.
  4. Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA.
  5. Laboratory of Medical Genetics, Bambino Gesù Children's Hospital, Rome, Italy.
  6. Medical Genetics Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
  7. Division of Newborn Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
  8. Unit of Muscular and Neurodegenerative Disorders, Department of Neurosciences, Bambino Gesù Children's Hospital, Rome, Italy.
  9. Anatomical Pathology and Victorian Neuromuscular Laboratory Service, Alfred Health and Monash University, Melbourne, Victoria, Australia.
  10. Department of Anatomical Pathology, Royal Children's Hospital, Melbourne, Australia.
  11. Department of Neuroscience and Cell Biology, Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA.

PMID: 33565183 DOI: 10.1002/humu.24179

Abstract

This study shows a causal association between ALDH1A2 variants and a novel, severe multiple congenital anomaly syndrome in humans that is neonatally lethal due to associated pulmonary hypoplasia and respiratory failure. In two families, exome sequencing identified compound heterozygous missense variants in ALDH1A2. ALDH1A2 is involved in the conversion of retinol (vitamin A) into retinoic acid (RA), which is an essential regulator of diaphragm and cardiovascular formation during embryogenesis. Reduced RA causes cardiovascular, diaphragmatic, and associated pulmonary defects in several animal models, matching the phenotype observed in our patients. In silico protein modeling showed probable impairment of ALDH1A2 for three of the four substitutions. In vitro studies show a reduction of RA. Few pathogenic variants in genes encoding components of the retinoic signaling pathway have been described to date, likely due to embryonic lethality. Thus, this study contributes significantly to knowledge of the role of this pathway in human diaphragm and cardiovascular development and disease. Some clinical features in our patients are also observed in Fryns syndrome (MIM# 229850), syndromic microphthalmia 9 (MIM# 601186), and DiGeorge syndrome (MIM# 188400). Patients with similar clinical features who are genetically undiagnosed should be tested for recessive ALDH1A2-deficient malformation syndrome.

© 2021 Wiley Periodicals LLC.

Keywords: ALDH1A2; congenital heart defects; diaphragmatic defects; fetal development; genetics; respiratory defects; retinoic acid

References

  1. Ababon, M. R., Li, B. I., Matteson, P. G., & Millonig, J. H. (2016). Quantitative measurement of relative retinoic acid levels in E8.5 embryos and neurosphere cultures using the F9 RARE-Lacz cell-based reporter assay. Journal of Visualized Experiments, 2016(115), 1-9. - PubMed
  2. Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E., Gerasimova, A., Bork, P., & Sunyaev, S. R. (2010). A method and server for predicting damaging missense mutations. Nature Methods, 7(4), 248-249. http://www.nature.com/doifinder/10.1038/nmeth0410-248 - PubMed
  3. Barnes, M. E., Mitchell, M. E., & Tweddell, J. S. (2011). Aortopulmonary window. Seminars in Thoracic and Cardiovascular Surgery: Pediatric Cardiac Surgery Annual, 14(1), 67-74. https://doi.org/10.1053/j.pcsu.2011.01.017 - PubMed
  4. Beecroft, S. J., McLean, C. A., Delatycki, M. B., Koshy, K., Yiu, E., Haliloglu, G., & Ravenscroft, G. (2017). Expanding the phenotypic spectrum associated with mutations of DYNC1H1. Neuromuscular Disorders, 27(7), 607-615. https://doi.org/10.1016/j.nmd.2017.04.011 - PubMed
  5. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235-242. https://doi.org/10.1093/nar/28.1.235 - PubMed
  6. De Bono, C., Thellier, C., Bertrand, N., Sturny, R., Jullian, E., Cortes, C., Stefanovic, S., Zaffran, S., Théveniau-Ruissy, M., & Kelly, R. G. (2018). T-box genes and retinoic acid signaling regulate the segregation of arterial and venous pole progenitor cells in the murine second heart field. Human Molecular Genetics, 27(21), 3747-3760. https://doi.org/10.1093/hmg/ddy266 - PubMed
  7. Burns, N. S., Iyer, R. S., Robinson, A. J., & Chapman, T. (2013). Diagnostic imaging of fetal and pediatric orbital abnormalities. American Journal of Roentgenology, 201(6), W797-W808. https://doi.org/10.2214/AJR.13.10949 - PubMed
  8. Capriotti, E., Calabrese, R., Fariselli, P., Martelli, P. L., Altman, R. B., & Casadio, R. (2013). WS-SNPs&GO: A web server for predicting the deleterious effect of human protein variants using functional annotation. BMC Genomics, 14(Suppl 3), S6. https://doi.org/10.1186/1471-2164-14-S3-S6 - PubMed
  9. Choi, Y., Sims, G. E., Murphy, S., Miller, J. R., & Chan, A. P. (2012). Predicting the functional effect of amino acid substitutions and indels. PLOS One, 7(10), e46688. https://doi.org/10.1371/journal.pone.0046688 - PubMed
  10. Clugston, R. D., & Greer, J. J. (2007). Diaphragm development and congenital diaphragmatic hernia. Seminars in Pediatric Surgery, 16(2), 94-100. https://doi.org/10.1053/j.sempedsurg.2007.01.004 - PubMed
  11. Clugston, R. D., Zhang, W., Alvarez, S., de Lera, A. R., & Greer, J. J. (2010). Understanding abnormal retinoid signaling as a causative mechanism in congenital diaphragmatic hernia. American Journal of Respiratory Cell and Molecular Biology, 42(3), 276-285. https://doi.org/10.1165/rcmb.2009-0076OC - PubMed
  12. Cunningham, T. J., & Duester, G. (2015). Mechanisms of retinoic acid signalling and its roles in organ and limb development. Nature Reviews Molecular Cell Biology, 16(2), 110-123. https://doi.org/10.1038/nrm3932 - PubMed
  13. Dalmer, T. R. A., & Clugston, R. D. (2019). Gene ontology enrichment analysis of congenital diaphragmatic hernia-associated genes. Pediatric Research, 85(1), 13-19. https://doi.org/10.1038/s41390-018-0192-8 - PubMed
  14. D'Aniello, E., & Waxman, J. S. (2015). Input overload: Contributions of retinoic acid signaling feedback mechanisms to heart development and teratogenesis. Developmental Dynamics, 244(3), 513-523. https://doi.org/10.1002/dvdy.24232 - PubMed
  15. Davydov, E. V., Goode, D. L., Sirota, M., Cooper, G. M., Sidow, A., & Batzoglou, S. (2010). Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLOS Computational Biology, 6(12), e1001025. https://doi.org/10.1371/journal.pcbi.1001025 - PubMed
  16. Dott, M. M., Wong, L.-Y. C., & Rasmussen, S. A. (2003). Population-based study of congenital diaphragmatic hernia: Risk factors and survival in metropolitan Atlanta, 1968-1999. Birth Defects Research Part A: Clinical and Molecular Teratology, 67(4), 261-267. https://doi.org/10.1002/bdra.10039 - PubMed
  17. Duester, G. (2008). Retinoic acid synthesis and signaling during early organogenesis. Cell, 134(6), 921-931. https://doi.org/10.1016/j.cell.2008.09.002 - PubMed
  18. Fahed, A. C., Gelb, B. D., Seidman, J. G., & Seidman, C. E. (2013). Genetics of congenital heart disease: The glass half empty. Circulation Research, 112(4), 707-720. https://doi.org/10.1161/CIRCRESAHA.112.300853 - PubMed
  19. Fernandes-Silva, H., Araújo-Silva, H., Correia-Pinto, J., & Moura, R. S. (2020). Retinoic acid: A key regulator of lung development. Biomolecules, 10(1), 1-18. https://doi.org/10.3390/biom10010152 - PubMed
  20. Gallot, D., Marceau, G., Coste, K., Hadden, H., Robert-Gnansia, E., Laurichesse, H., & Sapin, V. (2005). Congenital diaphragmatic hernia: A retinoid-signaling pathway disruption during lung development? Birth Defects Research Part A - Clinical and Molecular Teratology, 73(8), 523-531. https://doi.org/10.1002/bdra.20151 - PubMed
  21. Golzio, C., Martinovic-Bouriel, J., Thomas, S., Mougou-Zrelli, S., Grattagliano-Bessières, B., Bonnière, M., Delahaye, S., Munnich, A., Encha-Razavi, F., Lyonnet, S., Vekemans, M., Attié-Bitach, T., & Etchevers, H. C. (2007). Matthew-Wood syndrome is caused by truncating mutations in the retinol-binding protein receptor gene STRA6. The American Journal of Human Genetics, 80(6), 1179-1187. https://doi.org/10.1086/518177 - PubMed
  22. Grantham, R. (1974). Amino acid difference formula to help explain protein evolution. Science, 185(4154), 862-864. - PubMed
  23. Hale, F. (1935). The relation of vitamin A to anophthalmos in pigs. American Journal of Ophthalmology, 18, 1087-1093. https://doi.org/10.1016/S0002-9394(35)90563-3 - PubMed
  24. High, F. A., Bhayani, P., Wilson, J. M., Bult, C. J., Donahoe, P. K., & Longoni, M. (2016). De novo frameshift mutation in COUP-TFII (NR2F2) in human congenital diaphragmatic hernia. American Journal of Medical Genetics, Part A, 170(9), 2457-2461. https://doi.org/10.1002/ajmg.a.37830 - PubMed
  25. Hoffman, J. I. E., & Kaplan, S. (2002). The incidence of congenital heart disease. Journal of the American College of Cardiology, 39, 1890-1900. https://doi.org/10.1016/S0735-1097(02)01886-7 - PubMed
  26. Holder, A. M., Klaassens, M., Tibboel, D., deKlein, A., Lee, B., & Scott, D. A. (2007). Genetic factors in congenital diaphragmatic hernia. American Journal of Human Genetics, 80(5), 825-845. https://doi.org/10.1086/513442 - PubMed
  27. Isom, D. G., Castañeda, C. A., Cannon, B. R., Velu, P. D., & García-Moreno, E. B. (2010). Charges in the hydrophobic interior of proteins. Proceedings of the National Academy of Sciences of the United States of America, 107(37), 16096 LP-16016100. - PubMed
  28. Kantarci, S., Al-Gazali, L., Hill, R. S., Donnai, D., Black, G. C. M., Bieth, E., & Pober, B. R. (2007). Mutations in LRP2, which encodes the multiligand receptor megalin, cause Donnai-Barrow and facio-oculo-acoustico-renal syndromes. Nature Genetics, 39(8), 957-959. https://doi.org/10.1038/ng2063 - PubMed
  29. Karczewski, K. J., Francioli, L. C., Tiao, G., Cummings, B. B., Alföldi, J., Wang, Q., & MacArthur, D. G. (2019). Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. BioRxiv, 531210. https://doi.org/10.1101/531210 - PubMed
  30. Keijzer, R., Liu, J., Deimling, J., Tibboel, D., & Post, M. (2000). Dual-hit hypothesis explains pulmonary hypoplasia in the nitrofen model of congenital diaphragmatic hernia. The American Journal of Pathology, 156(4), 1299-1306. https://doi.org/10.1016/S0002-9440(10)65000-6 - PubMed
  31. Kelly, R. G. (2012). The second heart field. Current Topics in Developmental Biology, 100, 33-65. https://doi.org/10.1016/B978-0-12-387786-4.00002-6 - PubMed
  32. Kircher, M., Witten, D. M., Jain, P., O′Roak, B. J., Cooper, G. M., & Shendure, J. (2014). A general framework for estimating the relative pathogenicity of human genetic variants. Nature Genetics, 46(3), 310-315. https://doi.org/10.1038/ng.2892 - PubMed
  33. Lamb, A. L., & Newcomer, M. E. (1999). The structure of retinal dehydrogenase type II at 2.7 Å resolution: Implications for retinal specificity. Biochemistry, 38(19), 6003-6011. https://doi.org/10.1021/bi9900471 - PubMed
  34. Lek, M., Karczewski, K. J., Samocha, K. E., Banks, E., Fennell, T., O, A. H., & MacArthur, D. G. (2016). Analysis of protein-coding genetic variation in 60,706 humans. Nature, 536, 285-292. http://www.nature.com/doifinder/10.1038/nature19057 - PubMed
  35. Long, A.-M., Bunch, K. J., Knight, M., Kurinczuk, J. J., & Losty, P. D. (2019). One-year outcomes of infants born with congenital diaphragmatic hernia: A national population cohort study. Archives of Disease in Childhood - Fetal and Neonatal Edition, 104(6), F643 LP-F643647. https://doi.org/10.1136/archdischild-2018-316396 - PubMed
  36. Longoni, M., Kantarci, S., Donnai, D., & Pober, B. R. (2008). Donnai-Barrow syndrome. In M. P. Adam, H. H. Ardinger, R. A. Pagon, S. E. Wallace, L. J. H. Bean, K. Stephens, & A. Amemiya (Eds.), GeneReviews®. University of Washington. http://www.ncbi.nlm.nih.gov/pubmed/20301732 - PubMed
  37. Marcadier, J. L., Mears, A. J., Woods, E. A., Fisher, J., Airheart, C., Qin, W., & Curry, C. J. (2016). A novel mutation in two Hmong families broadens the range of STRA6-related malformations to include contractures and camptodactyly. American Journal of Medical Genetics, Part A, 170A(1), 11-18. https://doi.org/10.1002/ajmg.a.37389 - PubMed
  38. Matsunami, N., Shanmugam, H., Baird, L., Stevens, J., Byrne, J. L., Barnhart, D. C., & Brunelli, L. (2018). Germline but not somatic de novo mutations are common in human congenital diaphragmatic hernia. Birth Defects Research, 110(7), 610-617. https://doi.org/10.1002/bdr2.1223 - PubMed
  39. McGivern, M. R., Best, K. E., Rankin, J., Wellesley, D., Greenlees, R., Addor, M.-C., & Martos, C. (2015). Epidemiology of congenital diaphragmatic hernia in Europe: A register-based study. Archives of Disease in Childhood. Fetal and Neonatal Edition, 100(2), F137-F144. https://doi.org/10.1136/archdischild-2014-306174 - PubMed
  40. McInerney-Leo, A. M., Harris, J. E., Gattas, M., Peach, E. E., Sinnott, S., Dudding-Byth, T., & Duncan, E. L. (2016). Fryns syndrome associated with recessive mutations in PIGN in two separate families. Human Mutation, 37(7), 695-702. https://doi.org/10.1002/humu.22994 - PubMed
  41. Mey, J., Babiuk, R. P., Clugston, R., Zhang, W., & Greer, J. J. (2003). Retinal dehydrogenase-2 is inhibited by compounds that induce congenital diaphragmatic hernias in rodents. The American Journal of Pathology, 162(2), 673-679. https://doi.org/10.1016/S0002-9440(10)63861-8 - PubMed
  42. Montalva, L., Raffler, G., Riccio, A., Lauriti, G., & Zani, A. (2020). Neurodevelopmental impairment in children with congenital diaphragmatic hernia: Not an uncommon complication for survivors. Journal of Pediatric Surgery, 55(4), 625-634. https://doi.org/10.1016/j.jpedsurg.2019.05.021 - PubMed
  43. Nakajima, Y. (2019). Retinoic acid signaling in heart development. Genesis, 57(7-8), e23300. https://doi.org/10.1002/dvg.23300 - PubMed
  44. Niederreither, K., McCaffery, P., Drager, U. C., Chambon, P., & Dolle, P. (1997). Restricted expression and retinoic acid-induced downregulation of the retinaldehyde dehydrogenase type 2 (RALDH-2) gene during mouse development. Mechanisms of Development, 62(1), 67-78. - PubMed
  45. Niederreither, K., Subbarayan, V., Dolle, P., & Chambon, P. (1999). Embryonic retinoic acid synthesis is essential for early mouse post-implantation development. Nature Genetics, 21(4), 444-448. https://doi.org/10.1038/7788 - PubMed
  46. Niederreither, K., Vermot, J., Le Roux, I., Schuhbaur, B., Chambon, P., & Dolle, P. (2003). The regional pattern of retinoic acid synthesis by RALDH2 is essential for the development of posterior pharyngeal arches and the enteric nervous system. Development, 130(11), 2525-2534. https://doi.org/10.1242/dev.00463 - PubMed
  47. Niederreither, K., Vermot, J., Messaddeq, N., Schuhbaur, B., Chambon, P., & Dolle, P. (2001). Embryonic retinoic acid synthesis is essential for heart morphogenesis in the mouse. Development, 128(7), 1019-1031. - PubMed
  48. Parisot, P., Mesbah, K., Théveniau-Ruissy, M., & Kelly, R. G. (2011). Tbx1, subpulmonary myocardium and conotruncal congenital heart defects. Birth Defects Research Part A: Clinical and Molecular Teratology, 91(6), 477-484. https://doi.org/10.1002/bdra.20803 - PubMed
  49. Philippakis, A. A., Azzariti, D. R., Beltran, S., Brookes, A. J., Brownstein, C. A., Brudno, M., & Rehm, H. L. (2015). The matchmaker exchange: A platform for rare disease gene discovery. Human Mutation, 36(10), 915-921. https://doi.org/10.1002/humu.22858 - PubMed
  50. Pober, B. R. (2007). Overview of epidemiology, genetics, birth defects, and chromosome abnormalities associated with CDH. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 145C(2), 158-171. https://doi.org/10.1002/ajmg.c.30126 - PubMed
  51. Qin, J. Y., Zhang, L., Clift, K. L., Hulur, I., Xiang, A. P., Ren, B. Z., & Lahn, B. T. (2010). Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. PLOS One, 5(5), 3-6. https://doi.org/10.1371/journal.pone.0010611 - PubMed
  52. Reva, B., Antipin, Y., & Sander, C. (2011). Predicting the functional impact of protein mutations: Application to cancer genomics. Nucleic Acids Research, 39(17), e118. https://doi.org/10.1093/nar/gkr407 - PubMed
  53. Schwarz, J. M., Cooper, D. N., Schuelke, M., & Seelow, D. (2014). Mutationtaster2: Mutation prediction for the deep-sequencing age. Nature Methods, 11(4), 361-362. https://doi.org/10.1038/nmeth.2890 - PubMed
  54. Shanmugam, H., Brunelli, L., Botto, L. D., Krikov, S., & Feldkamp, M. L. (2017). Epidemiology and prognosis of congenital diaphragmatic hernia: A population-based cohort study in Utah. Birth Defects Research, 109(18), 1451-1459. https://doi.org/10.1002/bdr2.1106 - PubMed
  55. Sim, N.-L., Kumar, P., Hu, J., Henikoff, S., Schneider, G., & Ng, P. C. (2012). SIFT web server: Predicting effects of amino acid substitutions on proteins. Nucleic Acids Research, 40(W1), W452-W457. https://doi.org/10.1093/nar/gks539 - PubMed
  56. Skari, H., Bjornland, K., Haugen, G., Egeland, T., & Emblem, R. (2000). Congenital diaphragmatic hernia: A meta-analysis of mortality factors. Journal of Pediatric Surgery, 35(8), 1187-1197. https://doi.org/10.1053/jpsu.2000.8725 - PubMed
  57. Slavotinek, A. M. (2014). The genetics of common disorders - Congenital diaphragmatic hernia. European Journal of Medical Genetics, 57(8), 418-423. https://doi.org/10.1016/j.ejmg.2014.04.012 - PubMed
  58. Stark, Z., Behrsin, J., Burgess, T., Ritchie, A., Yeung, A., Tan, T. Y., & Patel, N. (2015). SNP microarray abnormalities in a cohort of 28 infants with congenital diaphragmatic hernia. American Journal of Medical Genetics, Part A, 167A(10), 2319-2326. https://doi.org/10.1002/ajmg.a.37177 - PubMed
  59. Stenkamp, R. E., Le Trong, I., Amory, J. K., Paik, J., & Goldstein, A. (2018). Crystal Structure of Human Aldehyde Dehydrogenase, ALDH1a2. - PubMed
  60. Tavtigian, S. V., Byrnes, G. B., Goldgar, D. E., & Thomas, A. (2008). Classification of rare missense substitutions, using risk surfaces, with genetic- and molecular-epidemiology applications. Human Mutation, 29(11), 1342-1354. https://doi.org/10.1002/humu.20896 - PubMed
  61. Thebaud, B., Tibboel, D., Rambaud, C., Mercier, J. C., Bourbon, J. R., Dinh-Xuan, A. T., & Archer, S. L. (1999). Vitamin A decreases the incidence and severity of nitrofen-induced congenital diaphragmatic hernia in rats. The American Journal of Physiology, 277(2), L423-L429. https://doi.org/10.1152/ajplung.1999.277.2.L423 - PubMed
  62. Tonks, A., Wyldes, M., Somerset, D. A., Dent, K., Abhyankar, A., Bagchi, I., & Kilby, M. D. (2004). Congenital malformations of the diaphragm: Findings of the West Midlands Congenital Anomaly Register 1995 to 2000. Prenatal Diagnosis, 24(8), 596-604. https://doi.org/10.1002/pd.908 - PubMed
  63. Topletz, A. R., Tripathy, S., Foti, R. S., Shimshoni, J. A., Nelson, W. L., & Isoherranen, N. (2015). Induction of CYP26A1 by metabolites of retinoic acid: Evidence that CYP26A1 is an important enzyme in the elimination of active retinoids. Molecular Pharmacology, 87(3), 430-441. https://doi.org/10.1124/mol.114.096784 - PubMed
  64. Vermot, J., Messaddeq, N., Niederreither, K., Dierich, A., & Dollé, P. (2006). Rescue of morphogenetic defects and of retinoic acid signaling in retinaldehyde dehydrogenase 2 (Raldh2) mouse mutants by chimerism with wild-type cells. Differentiation, 74(9-10), 661-668. https://doi.org/10.1111/j.1432-0436.2006.00094.x - PubMed
  65. Vermot, J., Niederreither, K., Garnier, J.-M. M., Chambon, P., & Dollé, P. (2003). Decreased embryonic retinoic acid synthesis results in a DiGeorge syndrome phenotype in newborn mice. Proceedings of the National Academy of Sciences of the United States of America, 100(4), 1763-1768. https://doi.org/10.1073/pnas.0437920100 - PubMed
  66. Vilhais-Neto, G. C., Maruhashi, M., Smith, K. T., Vasseur-Cognet, M., Peterson, A. S., Workman, J. L., & Pourquié, O. (2010). Rere controls retinoic acid signalling and somite bilateral symmetry. Nature, 463(7283), 953-957. https://doi.org/10.1038/nature08763 - PubMed
  67. Wilson, J. G., Roth, C. B., & Warkany, J. (1953). An analysis of the syndrome of malformations induced by maternal vitamin a deficiency. Effects of restoration of vitamin a at various times during gestation. American Journal of Anatomy, 92(2), 189-217. https://doi.org/10.1002/aja.1000920202 - PubMed
  68. Yap, P., McGillivray, G., Norris, F., Said, J. M., Kornman, L., & Stark, Z. (2015). Fetal phenotype of 17q12 microdeletion syndrome: Renal echogenicity and congenital diaphragmatic hernia in 2 cases. Prenatal Diagnosis, 35(12), 1265-1267. https://doi.org/10.1002/pd.4690 - PubMed
  69. Yu, L., Wynn, J., Ma, L., Guha, S., Mychaliska, G. B., Crombleholme, T. M., & Chung, W. K. (2012). De novo copy number variants are associated with congenital diaphragmatic hernia. Journal of Medical Genetics, 49(10), 650-659. https://doi.org/10.1136/jmedgenet-2012-101135 - PubMed

Publication Types

Grant support