Display options
Share it on

Hum Mutat. 2021 May;42(5):491-497. doi: 10.1002/humu.24180. Epub 2021 Mar 14.

Novel variants in critical domains of ATP8A2 and expansion of clinical spectrum.

Human mutation

Erfan Heidari, Alexander N Harrison, Ehsan Jafarinia, Ali Reza Tavasoli, Navid Almadani, Robert S Molday, Masoud Garshasbi

Affiliations

  1. Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
  2. Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada.
  3. Division of Pediatric Neurology, Myelin Disorders Clinic, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
  4. Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran.

PMID: 33565221 DOI: 10.1002/humu.24180

Abstract

ATP8A2 is a P4-ATPase that flips phosphatidylserine across membranes to generate and maintain transmembrane phospholipid asymmetry. Loss-of-function variants cause severe neurodegenerative and developmental disorders. We have identified three ATP8A2 variants in unrelated Iranian families that cause intellectual disability, dystonia, below-average head circumference, mild optic atrophy, and developmental delay. Additionally, all the affected individuals displayed tooth abnormalities associated with defects in teeth development. Two variants (p.Asp825His and p.Met438Val) reside in critical functional domains of ATP8A2. These variants express at very low levels and lack ATPase activity. Inhibitor studies indicate that these variants are misfolded and degraded by the cellular proteasome. We conclude that Asp825, which coordinates with the Mg

© 2021 Wiley Periodicals LLC.

Keywords: ATP8A2; P4-ATPase; loss of function; phosphatidylserine flippase; tooth abnormalities

References

  1. Alsahli, S., Alrifai, M. T., Al Tala, S., Al Mutairi, F., & Alfadhel, M. (2018). Further delineation of the clinical phenotype of cerebellar ataxia, mental retardation, and disequilibrium syndrome type 4. Journal of Central Nervous System Disease, 10, 117957351875968. https://doi.org/10.1177/1179573518759682 - PubMed
  2. Andersen, J. P., Vestergaard, A. L., Mikkelsen, S. A., Mogensen, L. S., Chalat, M., & Molday, R. S. (2016). P4-ATPases as phospholipid flippases-Structure, function, and enigmas. Frontiers in Physiology, 7, 1-23. https://doi.org/10.3389/fphys.2016.00275 - PubMed
  3. Bard, J. A. M., Goodall, E. A., Greene, E. R., Jonsson, E., Dong, K. C., & Martin, A. (2018). Structure and function of the 26S proteasome. Annual Review of Biochemistry, 87(1), 697-724. https://doi.org/10.1146/annurev-biochem-062917-011931 - PubMed
  4. Bevers, E. M., & Williamson, P. L. (2016). Getting to the outer leaflet: Physiology of phosphatidylserine exposure at the plasma membrane. Physiological Reviews, 96(2), 605-645. https://doi.org/10.1152/physrev.00020.2015 - PubMed
  5. Cacciagli, P., Haddad, M.-R., Mignon-Ravix, C., El-Waly, B., Moncla, A., Missirian, C., & Villard, L. (2010). Disruption of the ATP8A2 gene in a patient with a t(10;13) de novo balanced translocation and a severe neurological phenotype. European Journal of Human Genetics, 18(12), 1360-1363. https://doi.org/10.1038/ejhg.2010.126 - PubMed
  6. Choi, H., Andersen, J. P., & Molday, R. S. (2019). Expression and functional characterization of missense mutations in ATP8A2 linked to severe neurological disorders. Human Mutation, 40(12), 2353-2364. https://doi.org/10.1002/humu.23889 - PubMed
  7. Coleman, J. A., Kwok, M. C. M., & Molday, R. S. (2009). Localization, purification, and functional reconstitution of the P4-ATPase Atp8a2, a phosphatidylserine flippase in photoreceptor disc membranes. Journal of Biological Chemistry, 284(47), 32670-32679. https://doi.org/10.1074/jbc.M109.047415 - PubMed
  8. Coleman, J. A., & Molday, R. S. (2011). Critical role of the β-subunit CDC50A in the stable expression, assembly, subcellular localization, and lipid transport activity of the P4-ATPase ATP8A2. Journal of Biological Chemistry, 286(19), 17205-17216. https://doi.org/10.1074/jbc.M111.229419 - PubMed
  9. Emre Onat, O., Gulsuner, S., Bilguvar, K., Nazli Basak, A., Topaloglu, H., Tan, M., & Ozcelik, T. (2013). Missense mutation in the ATPase, aminophospholipid transporter protein ATP8A2 is associated with cerebellar atrophy and quadrupedal locomotion. European Journal of Human Genetics, 21(3), 281-285. https://doi.org/10.1038/ejhg.2012.170 - PubMed
  10. Guissart, C., Harrison, A. N., Benkirane, M., Oncel, I., Arslan, E. A., Chassevent, A. K., & Koenig, M. (2020). ATP8A2-related disorders as recessive cerebellar ataxia. Journal of Neurology, 267(1), 203-213. https://doi.org/10.1007/s00415-019-09579-4 - PubMed
  11. Hiraizumi, M., Yamashita, K., Nishizawa, T., & Nureki, O. (2019). Cryo-EM structures capture the transport cycle of the P4-ATPase flippase. Science, 365(6458), 1149-1155. https://doi.org/10.1126/science.aay3353 - PubMed
  12. Lee, S., Uchida, Y., Wang, J., Matsudaira, T., Nakagawa, T., Kishimoto, T., & Arai, H. (2015). Transport through recycling endosomes requires EHD1 recruitment by a phosphatidylserine translocase. The EMBO Journal, 34(5), 669-688. https://doi.org/10.15252/embj.201489703 - PubMed
  13. Martín-Hernández, E., Rodríguez-García, M. E., Camacho, A., Matilla-Dueñas, A., García-Silva, M. T., Quijada-Fraile, P., & Martínez-Azorín, F. (2016). New ATP8A2 gene mutations associated with a novel syndrome: Encephalopathy, intellectual disability, severe hypotonia, chorea and optic atrophy. Neurogenetics, 17(4), 259-263. https://doi.org/10.1007/s10048-016-0496-y - PubMed
  14. Matalova, E., Svandova, E., & Tucker, A. S. (2012). Apoptotic signaling in mouse odontogenesis. OMICS: A Journal of Integrative Biology, 16(1-2), 60-70. https://doi.org/10.1089/omi.2011.0039 - PubMed
  15. Matalova, E., Tucker, A. S., & Sharpe, P. T. (2004). Death in the life of a tooth. Journal of Dental Research, 83(1), 11-16. https://doi.org/10.1177/154405910408300103 - PubMed
  16. McMillan, H. J., Telegrafi, A., Singleton, A., Cho, M. T., Lelli, D., Lynn, F. C., & Yoon, G. (2018). Recessive mutations in ATP8A2 cause severe hypotonia, cognitive impairment, hyperkinetic movement disorders and progressive optic atrophy. Orphanet Journal of Rare Diseases, 13(1), 86. https://doi.org/10.1186/s13023-018-0825-3 - PubMed
  17. Segawa, K., & Nagata, S. (2015). An apoptotic ‘eat me’ signal: Phosphatidylserine exposure. Trends in Cell Biology, 25(11), 639-650. https://doi.org/10.1016/j.tcb.2015.08.003 - PubMed
  18. van der Velden, L. M., Wichers, C. G. K., van Breevoort, A. E. D., Coleman, J. A., Molday, R. S., Berger, R., Klomp, L. W., & van de Graaf, S. F. J. (2010). Heteromeric interactions required for abundance and subcellular localization of human CDC50 proteins and class 1 P4-ATPases. Journal of Biological Chemistry, 285(51), 40088-40096. https://doi.org/10.1074/jbc.M110.139006 - PubMed
  19. Wang, J., Molday, L. L., Hii, T., Coleman, J. A., Wen, T., Andersen, J. P., & Molday, R. S. (2018). Proteomic analysis and functional characterization of P4-ATPase phospholipid flippases from murine tissues. Scientific Reports, 8(1), 10795. https://doi.org/10.1038/s41598-018-29108-z - PubMed
  20. Xu, Q., Yang, G.-Y., Liu, N., Xu, P., Chen, Y.-L., Zhou, Z., & Ding, X. (2012). P4 -ATPase ATP8A2 acts in synergy with CDC50A to enhance neurite outgrowth. FEBS Letters, 586(13), 1803-1812. https://doi.org/10.1016/j.febslet.2012.05.018 - PubMed
  21. Zhu, X., Libby, R. T., de Vries, W. N., Smith, R. S., Wright, D. L., Bronson, R. T., & John, S. W. M. (2012). Mutations in a P-type ATPase gene cause axonal degeneration. PLOS Genetics, 8(8), e1002853. https://doi.org/10.1371/journal.pgen.1002853 - PubMed

Publication Types

Grant support