Display options
Share it on

JCI Insight. 2021 Apr 08;6(7). doi: 10.1172/jci.insight.143469.

Activation of skeletal muscle-resident glial cells upon nerve injury.

JCI insight

Daisy Proietti, Lorenzo Giordani, Marco De Bardi, Chiara D'Ercole, Biliana Lozanoska-Ochser, Susanna Amadio, Cinzia Volonté, Sara Marinelli, Antoine Muchir, Marina Bouché, Giovanna Borsellino, Alessandra Sacco, Pier Lorenzo Puri, Luca Madaro

Affiliations

  1. IRCCS Fondazione Santa Lucia, Rome, Italy.
  2. Department of Anatomy, Histology, Forensic Medicine and Orthopedics, University of Rome "la Sapienza", Rome, Italy.
  3. Sorbonne Université, INSERM UMRS 974, Association Institut de Myologie, Centre de Recherche en Myologie, Paris, France.
  4. CNR, National Research Council, Institute for Systems Analysis and Computer Science, Rome, Italy.
  5. CNR, National Research Council, Institute of Biochemistry and Cell Biology, Monterotondo Scalo, Rome, Italy.
  6. Development, Aging and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.

PMID: 33661767 PMCID: PMC8119188 DOI: 10.1172/jci.insight.143469

Abstract

Here, we report on the identification of Itga7-expressing muscle-resident glial cells activated by loss of neuromuscular junction (NMJ) integrity. Gene expression analysis at the bulk and single-cell level revealed that these cells are distinct from Itga7-expressing muscle satellite cells. We show that a selective activation and expansion of Itga7+ glial cells occur in response to muscle nerve lesion. Upon activation, muscle glial-derived progenies expressed neurotrophic genes, including nerve growth factor receptor, which enables their isolation by FACS. We show that activated muscle glial cells also expressed genes potentially implicated in extracellular matrix remodeling at NMJs. We found that tenascin C, which was highly expressed by muscle glial cells, activated upon nerve injury and preferentially localized to NMJ. Interestingly, we observed that the activation of muscle glial cells by acute nerve injury was reversible upon NMJ repair. By contrast, in a mouse model of ALS, in which NMJ degeneration is progressive, muscle glial cells steadily increased over the course of the disease. However, they exhibited an impaired neurotrophic activity, suggesting that pathogenic activation of glial cells may be implicated in ALS progression.

Keywords: Muscle Biology; Neuromuscular disease; Skeletal muscle

References

  1. Nat Cell Biol. 2018 Jan;20(1):46-57 - PubMed
  2. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):3155-60 - PubMed
  3. iScience. 2020 Apr 24;23(4):100993 - PubMed
  4. Semin Cell Dev Biol. 2020 Aug;104:31-38 - PubMed
  5. Annu Rev Physiol. 2018 Feb 10;80:159-188 - PubMed
  6. J Neurosci Res. 2002 Jan 1;67(1):93-9 - PubMed
  7. Cell Stem Cell. 2018 Nov 1;23(5):653-664 - PubMed
  8. Cell Rep. 2016 Mar 1;14(8):1940-52 - PubMed
  9. Nat Rev Mol Cell Biol. 2011 Jun;12(6):349-61 - PubMed
  10. Lancet. 2011 Mar 12;377(9769):942-55 - PubMed
  11. Am J Physiol Cell Physiol. 2009 Aug;297(2):C238-52 - PubMed
  12. Exp Neurol. 2007 Sep;207(1):64-74 - PubMed
  13. Dev Dyn. 1992 Jul;194(3):209-21 - PubMed
  14. Cell Death Dis. 2015 Jul 23;6:e1830 - PubMed
  15. Cell Stem Cell. 2019 Jun 6;24(6):958-973.e9 - PubMed
  16. Cell Stem Cell. 2018 Oct 4;23(4):557-571.e8 - PubMed
  17. Development. 2019 Apr 11;146(12): - PubMed
  18. Dev Biol. 2018 Jan 15;433(2):200-209 - PubMed
  19. Elife. 2017 Jun 06;6: - PubMed
  20. Cell Stem Cell. 2019 Feb 7;24(2):240-256.e9 - PubMed
  21. Elife. 2015 Aug 27;4: - PubMed
  22. Nat Cell Biol. 2018 Aug;20(8):917-927 - PubMed
  23. J Biophys Biochem Cytol. 1961 Feb;9:493-5 - PubMed
  24. Nat Cell Biol. 2003 Feb;5(2):87-90 - PubMed
  25. Neurol Res Int. 2011;2011:718987 - PubMed
  26. J Vis Exp. 2013 Mar 22;(73):e50074 - PubMed
  27. Int J Biochem Cell Biol. 2014 Sep;54:272-85 - PubMed
  28. Nat Rev Neurosci. 2005 Sep;6(9):671-82 - PubMed
  29. Dev Cell. 2018 Jul 16;46(2):135-143 - PubMed
  30. Ultrastruct Pathol. 2014 Oct;38(5):295-302 - PubMed
  31. Cell Rep. 2020 Mar 10;30(10):3583-3595.e5 - PubMed
  32. Mol Cell. 2019 May 2;74(3):609-621.e6 - PubMed
  33. EMBO Rep. 2013 Dec;14(12):1062-72 - PubMed
  34. Int J Biochem Cell Biol. 2013 Oct;45(10):2121-9 - PubMed
  35. J Physiol. 2017 Feb 1;595(3):647-661 - PubMed
  36. Cell Stem Cell. 2019 Dec 5;25(6):797-813.e9 - PubMed
  37. Cell. 2019 Jun 13;177(7):1888-1902.e21 - PubMed
  38. Amyotroph Lateral Scler. 2011 Jul;12(4):264-71 - PubMed
  39. Matrix Biol. 2019 Sep;82:20-37 - PubMed
  40. Cell Stem Cell. 2012 May 4;10(5):504-14 - PubMed
  41. Nature. 2018 Oct;562(7727):367-372 - PubMed
  42. Nat Commun. 2018 Sep 10;9(1):3670 - PubMed
  43. Cell Stem Cell. 2017 May 4;20(5):593-608 - PubMed
  44. J Cell Sci. 2012 Mar 15;125(Pt 6):1531-43 - PubMed

Publication Types

Grant support