Display options
Share it on

NPJ Vaccines. 2021 Mar 15;6(1):36. doi: 10.1038/s41541-021-00297-5.

Personalized cancer vaccine strategy elicits polyfunctional T cells and demonstrates clinical benefits in ovarian cancer.

NPJ vaccines

Janos L Tanyi, Cheryl L-L Chiang, Johanna Chiffelle, Anne-Christine Thierry, Petra Baumgartener, Florian Huber, Christine Goepfert, David Tarussio, Stephanie Tissot, Drew A Torigian, Harvey L Nisenbaum, Brian J Stevenson, Hajer Fritah Guiren, Ritaparna Ahmed, Anne-Laure Huguenin-Bergenat, Emese Zsiros, Michal Bassani-Sternberg, Rosemarie Mick, Daniel J Powell, George Coukos, Alexandre Harari, Lana E Kandalaft

Affiliations

  1. Ovarian Cancer Research Center, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
  2. Department of Oncology, Lausanne University Hospital (CHUV), Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland. [email protected].
  3. Department of Oncology, Lausanne University Hospital (CHUV), Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
  4. Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
  5. Institute of Animal Pathology, COMPATH, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
  6. School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
  7. Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
  8. Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
  9. Department of Oncology, Lausanne University Hospital (CHUV), Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland. [email protected].
  10. Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland. [email protected].

PMID: 33723260 PMCID: PMC7960755 DOI: 10.1038/s41541-021-00297-5

Abstract

T cells are important for controlling ovarian cancer (OC). We previously demonstrated that combinatorial use of a personalized whole-tumor lysate-pulsed dendritic cell vaccine (OCDC), bevacizumab (Bev), and cyclophosphamide (Cy) elicited neoantigen-specific T cells and prolonged OC survival. Here, we hypothesize that adding acetylsalicylic acid (ASA) and low-dose interleukin (IL)-2 would increase the vaccine efficacy in a recurrent advanced OC phase I trial (NCT01132014). By adding ASA and low-dose IL-2 to the OCDC-Bev-Cy combinatorial regimen, we elicited vaccine-specific T-cell responses that positively correlated with patients' prolonged time-to-progression and overall survival. In the ID8 ovarian model, animals receiving the same regimen showed prolonged survival, increased tumor-infiltrating perforin-producing T cells, increased neoantigen-specific CD8

References

  1. Front Immunol. 2019 Aug 08;10:1832 - PubMed
  2. J Immunol. 2007 Feb 15;178(4):2278-86 - PubMed
  3. Cancer Res. 2012 May 1;72(9):2162-71 - PubMed
  4. Gynecol Oncol. 2010 Jun;117(3):497-504 - PubMed
  5. J Immunol. 1978 Nov;121(5):1951-5 - PubMed
  6. Nat Genet. 2013 Jun;45(6):580-5 - PubMed
  7. Nat Commun. 2018 Mar 15;9(1):1092 - PubMed
  8. Cancer Immunol Immunother. 2009 Mar;58(3):449-59 - PubMed
  9. Cytotherapy. 2010 Oct;12(6):721-34 - PubMed
  10. PLoS Comput Biol. 2017 Aug 23;13(8):e1005725 - PubMed
  11. Eur J Immunol. 2004 Feb;34(2):336-44 - PubMed
  12. Br J Cancer. 2000 Jul;83(1):112-20 - PubMed
  13. Br J Cancer. 2003 Jun 16;88(12):1979-86 - PubMed
  14. Gynecol Oncol. 2008 Feb;108(2):415-20 - PubMed
  15. J Invest Dermatol. 2009 Dec;129(12):2835-42 - PubMed
  16. Cytometry A. 2011 Feb;79(2):167-74 - PubMed
  17. Int J Oncol. 2005 Oct;27(4):1039-46 - PubMed
  18. Sci Transl Med. 2018 Apr 11;10(436): - PubMed
  19. Cancer Immunol Immunother. 2012 Oct;61(10):1791-804 - PubMed
  20. N Engl J Med. 2003 Jan 16;348(3):203-13 - PubMed
  21. Ann Rheum Dis. 2019 Feb;78(2):209-217 - PubMed
  22. Carcinogenesis. 2000 Apr;21(4):585-91 - PubMed
  23. N Engl J Med. 2018 Oct 18;379(16):1519-1528 - PubMed
  24. Cancer Immunol Immunother. 2019 May;68(5):773-785 - PubMed
  25. Nat Biotechnol. 2019 Nov;37(11):1283-1286 - PubMed
  26. J Immunol. 2018 Dec 15;201(12):3705-3716 - PubMed
  27. Nat Med. 2014 Jun;20(6):607-15 - PubMed
  28. Lab Invest. 2017 Jul;97(7):873-885 - PubMed
  29. Mod Pathol. 2009 Mar;22(3):373-84 - PubMed
  30. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3429-33 - PubMed
  31. Science. 2005 Jan 7;307(5706):58-62 - PubMed
  32. Clin Cancer Res. 2003 Nov 15;9(15):5721-8 - PubMed
  33. J Immunol. 2010 Jan 15;184(2):591-7 - PubMed
  34. Blood. 2005 Apr 1;105(7):2862-8 - PubMed
  35. Gynecol Oncol. 2016 Oct;143(1):120-127 - PubMed
  36. J Natl Cancer Inst. 2002 Feb 20;94(4):252-66 - PubMed
  37. Proc Natl Acad Sci U S A. 2005 Dec 20;102(51):18538-43 - PubMed
  38. Lancet. 2012 Apr 28;379(9826):1591-601 - PubMed
  39. Nat Med. 2004 Sep;10(9):942-9 - PubMed
  40. Semin Immunol. 2010 Jun;22(3):173-82 - PubMed
  41. Am J Pathol. 2002 Mar;160(3):893-903 - PubMed
  42. J Immunol. 1978 Oct;121(4):1491-5 - PubMed
  43. J Immunother. 2008 Oct;31(8):771-80 - PubMed
  44. Clin Cancer Res. 2013 Sep 1;19(17):4801-15 - PubMed
  45. Clin Cancer Res. 2007 Apr 1;13(7):2100-8 - PubMed
  46. Front Immunol. 2017 Oct 20;8:1367 - PubMed
  47. J Immunol. 2006 Feb 1;176(3):1456-64 - PubMed
  48. Br J Cancer. 2000 Jul;83(2):196-203 - PubMed
  49. PLoS One. 2016 May 18;11(5):e0155189 - PubMed
  50. Am J Gastroenterol. 2011 Jul;106(7):1340-50 - PubMed
  51. J Theor Biol. 2003 Feb 21;220(4):545-54 - PubMed
  52. Cancer Res. 1981 Nov;41(11 Pt 1):4420-5 - PubMed
  53. Blood. 2006 Mar 15;107(6):2409-14 - PubMed
  54. Cancer. 1999 Jan 1;85(1):178-87 - PubMed
  55. J Clin Oncol. 2006 Mar 1;24(7):1169-77 - PubMed
  56. Cell. 2015 Sep 10;162(6):1257-70 - PubMed
  57. Br J Cancer. 1997;76(9):1221-7 - PubMed

Publication Types

Grant support